首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mercury Porosimetry (MP) hysteresis is a commonly observed phenomenon in which mercury retention disguises further the overall hysteresis picture. This article introduces a new interpretation of the MP hysteresis based on the combined effect of pore structure networking and mercury contact angle variation occurring between the mercury penetration and retraction operations. To distinguish the contribution of each factor the following investigations were carried out. Nitrogen sorption (NP) and MP experiments were performed on samples of an anodic aluminum membrane and the results were interpreted in terms of the Corrugated Pore Structure Model (CPSM), i.e., CPSM-Nitrogen and CPSM-Mercury models, respectively. The simulation of the observed hysteresis data using the CPSM model enabled the evaluation of an identical for the two methods intrinsic pore size distribution (PSD) and cumulative surface area in perfect agreement with the respective BET value. Additionally, the CPSM analysis of data resulted in the evaluation of mercury contact angles, i.e., θ(p)=143 degrees and θ(r)=101.7 degrees for the MP penetration and retraction branches of the hysteresis loop, respectively. Moreover, CPSM-Mercury simulations of literature MP hysteresis data, valid for controlled-pore glasses and nuclepore membranes, led to the evaluation of contact angles, i.e., glasses: θ(p)=143 degrees, θ(r)=100.5-107.5 degrees and nuclepore: θ(p)=143 degrees, θ(r)=118- 121 degrees. The latter values are comparable with relevant literature data and approximate those determined for the anodic aluminum membrane. The CPSM model employed herein proved to be a flexible and reliable model for simulating the pertinent hysteresis loops by combining pore networking and contact angle hysteresis phenomena. Copyright 2001 Academic Press.  相似文献   

2.
The evaluation of the pore-size distribution (PSD) of natural and modified mesoporous zeolites, i.e., clinoptilolites is presented. We demonstrate the SEM results showing that the pores of fracture-type from 25-50 nm to 100 nm in size between clinoptilolite grains, as well as pores between crystal aggregates up to 500 nm in size are present in the studied material. The detailed distribution of pore sizes and tortuosity factor of the above-mentioned materials are determined from the adsorption-desorption isotherms of nitrogen measured volumetrically at 77 K. To obtain the reliable pore size distribution (PSD) of the above-mentioned materials both adsorption and desorption branches of the experimental hysteresis loop are described simultaneously by recently developed corrugated pore structure model (CPSM) of Androutsopoulos and Salmas. Evaluated pore size distributions are characterized by well-defined smooth peaks placed in the region of the mesoporosity. Moreover, the mean pore diameter calculated from the classical static measurement of nitrogen adsorption at 77 K correspond very well to the pore diameters from SEM, showing the applicability of the CPSM for characterization of the porosity of natural zeolites. We conclude that classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena are a powerful method which can be applied for pore structure characterization of natural and modified clinoptilolites.  相似文献   

3.
The formation of mesoporous TiO2 spheres via a facile chemical process   总被引:6,自引:0,他引:6  
The mesoporous TiO(2) solid and hollow spheres have been synthesized via a controllable and simple chemical route. Structural characterization indicates that these TiO(2) mesoporous spheres after calcined at 500 degrees C have an obvious mesoporous structure with the diameters of 200-300 nm for solid spheres and 200-500 nm for hollow spheres. The average pore sizes and BET surface areas of the mesoporous TiO(2) solid and hollow spheres are 6.8, 7.0 nm and 162, 90 m(2)/g, respectively. Optical adsorption investigation shows that TiO(2) solid and hollow spheres possess a direct band gap structure with the optical band gap of 3.68 and 3.75 eV, respectively. A possible formation mechanism for TiO(2) solid and hollow spheres is discussed.  相似文献   

4.
Mesoporous silica spheres from colloids   总被引:1,自引:0,他引:1  
A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 microm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.  相似文献   

5.
Two kinds of highly ordered mesoporous silica materials (FDU-11, FDU-13) with novel three-dimensional (3-D) tetragonal and orthorhombic structures were synthesized by using tetra-headgroup rigid bolaform quaternary ammonium surfactant [(CH(3))(3)NCH(2)CH(2)CH(2)N(CH(3))(2)CH(2)(CH(2))(11)OC(6)H(4)C(6)H(4)O(CH(2))(11)CH(2)N(CH(3))(2)CH(2)CH(2)CH(2)N(CH(3))(3).4Br] (C(3-12-12)(-)(3)) as a template under alkaline conditions. High-resolution transmission electron microscopy (HRTEM), small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD) show that mesoporous silica FDU-11 has primitive tetragonal P4/mmm structure with cell parameters a = b = 8.46 nm, c = 5.22 nm, and c/a ratio = 0.617. N(2) sorption isotherms show that calcined FDU-11 has a high BET surface area of approximately 1490 m(2)/g, a uniform pore size of approximately 2.72 nm, and a pore volume of approximately 1.88 cm(3)/g. Mesoporous silica FDU-13 has primitive orthorhombic Pmmm structure. The cell parameters are a = 9.81, b = 5.67, and c = 3.66 nm. N(2) sorption isotherms show that calcined FDU-13 has a high BET surface area of 1210 m(2)/g, a uniform mesopore size of approximately 1.76 nm, and a large pore volume of approximately 1.83 cm(3)/g. Such low symmetries for 3-D mesostructures (tetragonal and orthorhombic system) have not been observed before even in amphiphilic liquid crystals, which maybe resulted from an oblate aggregation of the bolaform surfactant and its strong electrostatic interaction with inorganic precursor. A probable mechanism has been proposed for the formation of such a 3-D low symmetrical mesostructure. These results will further extend the synthesis of mesoporous materials and may open up new opportunities for their new applications in catalysis, separation, and nanoscience.  相似文献   

6.
A simple and fast route for the synthesis of metal-organic framework(MOF) particles was presented.Cu 3(BTC) 2(HKUST-1,BTC=1,3,5-benzenetricarboxylate),one of the most well-known MOFs,was synthesized at room temperature via coordination modulation method.By adding different modulators(monocarboxylic acids) into the reaction system,the morphologies of HKUST-1 crystals were tuned from nano spheres to micro octahedrons at room temperature without any complex equipment.X-Ray diffractions and gas sorption measurements revealed highly crystalline particles with large Brunauer-Emmett-Teller(BET) surface areas(1116―1273 m 2 /g) and total pore volumes(0.62―0.73 cm 3 /g).The significantly small particle sizes and high capacity of gas sorption are considered advantageous for envisaged application in practical industrial process.  相似文献   

7.
The surface area and pore structure characteristics were investigated for a series of aliphatic- and aromatic-based polyurethane (PU) copolymers containing a macromolecular porogen (β-cyclodextrin). The bi-functional diisocyanates used as crosslinker units were: 1,6-hexamethylene, 4,4'-dicyclohexylmethane, 4,4'-diphenylmethane, 1,4-phenylene, and 1,5-naphthalene diisocyanate, respectively. The macromolecular porogen content was controlled by fixing the composition of β-CD and varying the co-monomer mole ratio from unity to larger integer values. Nitrogen adsorption results reveal that copolymer materials with variable mole ratios (β-CD: crosslinker) from 1:1 to 1:3 displayed relatively low BET surface areas (SA~10(1) m(2)/g) and mesopore diameters (~16-29 nm). In contrast, a dye adsorption method in aqueous solution with p-nitrophenol (PNP) at pH=4.60 and 295 K provided estimates of the surface area (1.5-6.2×10(2) m(2)/g) for the corresponding copolymer materials. Variation of the copolymer SA was attributed to the type of diisocyanate crosslinker and its relative mole ratio. The differences in the estimated SA values from porosimetry and the UV-Vis dye adsorption method for these nanoporous copolymers were attributed to the role of solvent as evidenced by swelling of the copolymer framework in aqueous solution and the respective temperature conditions.  相似文献   

8.
Several series of fumed silicas and mixed fumed oxides produced and treated under different conditions were studied in gaseous and liquid media using nitrogen and water adsorption-desorption, mass spectrometry, FTIR, NMR, thermally stimulated depolarization current (TSDC), photon correlation spectroscopy (PCS), zeta potential, potentiometric titration, and Auger electron spectroscopy methods. Aggregation of primary particles and adsorption capacity (Vp) decrease and hysteresis loops of nitrogen adsorption-desorption isotherms becomes shorter with decreasing specific surface area (S(BET)). However, the shape of nitrogen adsorption-desorption isotherms can be assigned to the same type independent of S(BET) value. The main maximum of pore size distribution (gaps between primary nonporous particles in aggregates and agglomerates) shifts toward larger pore size and its intensity decreases with decreasing S(BET) value. The water adsorption increases with increasing S(BET) value; however, the opposite effect is observed for the content of surface hydroxyls (in mmol/m2). Associative desorption of water (2(SiOH)-->SiOSi+H2O) depends on both the morphology and synthesis conditions of fumed silica. The silica dissolution rate increases with increasing S(BET) and pH values. However, surface charge density and the modulus of zeta-potential increase with decreasing S(BET) value. The PCS, 1H NMR, and TSDC spectra demonstrate rearrangement of the fumed silica dispersion depending on the S(BET) value and the silica concentration (C(SiO2)) in the aqueous suspensions. A specific state of the dispersion is observed at the C(SiO2) values corresponding to the bulk density of the initial silica powder.  相似文献   

9.
以三维有序多孔碳为模板, 以聚甲基硅烷(PMS)为前驱体, 经过前驱体的渗入、交联和陶瓷转化以及多孔碳模板的烧除, 制备了长程三维有序SiC空心球. 所制备的SiC空心球的外径(135-896 nm)、 球壳厚度(14-79 nm)、 BET比表面积(50.8~5.0 m2/g)及微孔体积(0.265~0.038 cm3/g)受不同孔径的多孔碳模板(150-1 000 nm)或不同前驱体浓度的控制. 所制备的SiC空心球以hcp结构排列成长程三维有序的序列.  相似文献   

10.
逄杰斌  丘坤元  危岩 《中国化学》2000,18(5):693-697
Mesoporous silica materials with pore diameters of 2-5 nm have been prepared using ascorbic acid as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate,followed by removing the ascorbic acid compound by extraction with ethanol.Characterization results from nitrogen sorption isotherm,powder X-ray diffraction and transmission electron microscopy indicate that the materials have large specific surface areas (e.g.1000 m2/g) and pore volumes (e.g.0.8 cm3/g).The rnesoporosity is arisen from interconnecting disordered wormlike channels and pores with relatively broad size distributions.As the ascorbic acid concentration is increased,the pore diameters and pore volumes of the materials increase.  相似文献   

11.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

12.
α-Fe_2O_3空心球的水热法制备及其对苯酚的吸附性能   总被引:1,自引:0,他引:1  
以铁氰化钾、磷酸二氢铵等为反应物,采用水热法合成了α-Fe2O3空心球,并用XRD,TEM,FESEM(场发射扫描电镜)、UV-Vis和低温氮吸附脱附对其进行了表征。结果表明,α-Fe2O3空心球直径在200~560nm之间,其BET比表面积为80m2·g-1,平均孔径为8.5nm。考察了反应时间、反应物用量和反应温度等对α-Fe2O3空心球形貌和大小的影响,提出了其可能的形成机理。研究了室温下α-Fe2O3空心球吸附苯酚的性能,吸附达平衡时,其吸附苯酚的量达97mg·g-1。  相似文献   

13.
The use of a semi-empirical alternative to the standard Washburn equation for the interpretation of raw mercury porosimetry data has been advocated. The alternative expression takes account of variations in both mercury contact angle and surface tension with pore size, for both advancing and retreating mercury meniscii. The semi-empirical equation presented was ultimately derived from electron microscopy data, obtained for controlled pore glasses by previous workers. It has been found that this equation is also suitable for the interpretation of raw data for sol-gel silica spheres. Interpretation of mercury porosimetry data using the alternative to the standard Washburn equation was found to give rise to pore sizes similar to those obtained from corresponding SAXS data. The interpretation of porosimetry data, for both whole and finely powdered silica spheres, using the alternative expression has demonstrated that the hysteresis and mercury entrapment observed for whole samples does not occur for fragmented samples. Therefore, for these materials, the structural hysteresis and overall level of mercury entrapment is caused by the macroscopic (> approximately 30 microm), and not the microscopic (< approximately 30 microm), properties of the porous medium. This finding suggested that mercury porosimetry may be used to obtain a statistical characterization of sample macroscopic structure similar to that obtained using MRI. In addition, from a comparison of the pore size distribution from porosimetry with that obtained using complementary nitrogen sorption data, it was found that, even in the absence of hysteresis and mercury entrapment, pore shielding effects were still present. This observation suggested that the mercury extrusion process does not occur by a piston-type retraction mechanism and, therefore, the usual method for the application of percolation concepts to mercury retraction is flawed.  相似文献   

14.
Mesoporous TiO2 microspheres with high specific surface areas were synthesized by means of a facile one‐step microwave hydrothermal process without using any template. The mesoporous materials were rapidly achieved using TiCl4, urea and ammonium sulphate at comparatively low microwave power (400 W) for 8 min irradiation. The morphology and microstructure of the as‐prepared products were characterized by field emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer‐Emmett‐Teller (BET) surface area analysis. Structural characterization indicates that the TiO2 microspheres display mesoporous structure. The average pore sizes and BET surface areas of the spheres were 5.3 nm and 222 m2g?1, respectively. The mesoporous nanocrystals synthesized at 160 °C for 8 min were then used to prepare the photoanode for dye sensitized solar cells (DSSCs). A high power conversion efficiency of 5.72% was achieved from the mesoporous TiO2 based photoanode, representing about 25.7% improvement over the efficiency of P25 photoanode.  相似文献   

15.
Transparent thin (ca. 100 nm) films of silica-surfactant mesostructured materials were deposited on borosilicate glass plates and soda-lime glass tubes from aqueous solutions containing tetraethoxysilane, alkyltrimethylammonium chloride, ammonia, and methanol. By calcination in air, the films became mesoporous (BET surface area of 700-900 m2 g-1) with pore diameter 2.0-2.8 nm.  相似文献   

16.
We report the surfactant-directed assembly of mesoporous metal/germanium-based semiconducting materials from coupling of anionic (Ge 9) (4-) clusters with various linking metal ions. The resulting materials feature a metal/Ge 9 framework perforated by regular arrays of mesoporous channels. The permanent mesoporosity of the materials NU-MGe-2 (M = Sb, In, Sn, Pb, Cd), determined by N 2 physisorption measurements, corresponds to high internal BET surface areas from 127 to 277 m (2)/g and total pore volumes from 0.15 to 0.26 cm (3)/g. The mesoporous structures exhibit energy gaps in the range of 1.48-1.70 eV as well as strong photoluminescence at room temperature with emission energies varying from 740 to 845 nm. The emission depends on pore wall thickness and framework composition. The photoemission intensity in the mesoporous intermetallic germanium-based frameworks can be selectively suppressed by adsorbing electron-acceptor species such as tetracyanoethylene molecules but remains unchanged when exposed to electron-donor species such as tetrathiafulvalene molecules.  相似文献   

17.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

18.
The powder of polyaluminum chloride-humic acid (PACl-HA) flocs was prepared by cryofixation-vacuum-freeze-drying method. The FTIR spectra show that some characteristic functional groups in polyaluminum chloride (PACl), humic acid (HA), and kaolin still existed in the dried flocs. X-ray diffractometry (XRD) patterns indicate that these flocs are amorphous. Nitrogen adsorption-desorption isotherms were obtained for different samples of the dried PACl-HA flocs. The BET specific surface area, BJH cumulative absorbed volume and BJH desorption average pore diameter of them were determined. The peak values of 8.4-11.2 nm (pore diameter) for pore size distribution (PSD) curves indicate that the pores of the dried flocs are mostly mesopores. The surface fractal dimensions D(s) and the corresponding fractal scales determined from both SEM images and nitrogen adsorption-desorption data sets reveal the multi-scale surface fractal properties of the dried PACl-HA flocs, which exhibited two distinct fractal regimes: a regime of low fractal dimensions (2.07-2.26) at higher scales (23-387 nm), mainly belonging to exterior surface scales, and a higher fractal dimensions (2.24-2.37) at lower scales (0.80-7.81 nm), falling in pore surface scales. Both HA addition and kaolin reduction in dried floc can decrease the irregularity and roughness of external surface. However, for the irregularity and roughness of pore surface, the addition of HA or kaolin in dried floc can increase them. Furthermore, some difference was found between the pore surface fractal dimensions D(s) calculated from nitrogen adsorption and desorption data. The pore surface D(s) values calculated through thermodynamic model were much greater than three.  相似文献   

19.
Sorption hysteresis is a widely studied phenomenon whose predicted behavior is well documented and researched. On the other hand, there is much less known about the region that lies between sorption isotherms, believed to be a metastable region. Scanning curves are a way of understanding the mechanism of hysteresis and a tool for hysteresis model validation. Scanning curves were produced for mesoporous materials: SBA-15 and MCM-41 for N(2) sorption at 77 K and Ar sorption at 87 K. A limited set of different scanning behaviors is identified. Like most hysteresis theories, it was found that a single model for scanning behavior cannot be extended to all materials under the same or different experimental conditions. Two behaviors are consistent with recent theories and simulations; however, several are not. The implications as to the characterization of pore dimensions and structure are discussed.  相似文献   

20.
Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号