首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reduced dimensionality model is used to study the relaxation of highly vibrationally excited O(2)(X (3)Sigma(g) (-),v>/=20) in collisions with O(2)(X (3)Sigma(g) (-),v=0). Spin-orbit coupled potential energy surfaces are employed to incorporate the vibrational-to-electronic energy transfer mechanism involving the O(2)(a (1)Delta(g)) and O(2)(b (1)Sigma(g) (+)) excited states. The transition probabilities obtained show a sharp increase for v>/=26 providing the first direct evidence of the important role played by the electronic energy transfer processes in the depletion of O(2)(X (3)Sigma(g) (-),v>/=26).  相似文献   

2.
The HOOO radical plays a crucial role in atmospheric processes involving the OH radical and O(2) molecule. We present an ab initio molecular orbital theory study on the decomposition reaction of the first excited state HOOO((2)A') with respect to OH and O(2). The geometries and harmonic vibrational frequencies of all stationary points are calculated at the CASSCF and MRCI levels of theory in conjunction with the 6-31+G(d,p) basis set. The potential energy profile of the decomposition reaction is studied at the CASSCF/6-31+G(d,p) level of theory, in which the complete valence orbitals and electrons are included in the active space. The energies of the potential energy profile are further refined at the CASPT2 and MRCI levels of the theory. Additionally, we have determined the interesting reaction process: the HOOO((2)A') radical with C(s) symmetry does not dissociate to OH((2)Pi) and O(2)((3)Sigma(-)(g)) directly as this is forbidden by orbital symmetry, but dissociates to OH((2)Pi) and O(2)((3)Sigma(-)(g)) via the change in symmetry from C(s) to C(infinity v) symmetry with a low barrier.  相似文献   

3.
The electronic structure and photochemistry of the O(2n)(-)(H(2)O)(m), n = 1-6, m = 0-1 cluster anions is investigated at 532 nm using photoelectron imaging and photofragment mass-spectroscopy. The results indicate that both pure oxygen clusters and their hydrated counterparts with n ≥ 2 form an O(4)(-) core. Fragmentation of these clusters yields predominantly O(2)(-) and O(2)(-)·H(2)O anionic products, with the addition of O(4)(-) fragments for larger parent clusters. The fragment autodetachment patterns observed for O(6)(-) and larger O(2n)(-) species, as well as some of their hydrated counterparts, indicate that the corresponding O(2)(-) fragments are formed in excited vibrational states (v ≥ 4). Yet, surprisingly, the unsolvated O(4)(-) anion itself does not show fragment autodetachment at 532 nm. It is hypothesized that the vibrationally excited O(2)(-) is formed in the intra-cluster photodissociation of the O(4)(-) core anion via a charge-hopping electronic relaxation mechanism mediated by asymmetric solvation of the nascent photofragments: O(4)(-) → O(2)(-)(X(2)Π(g)) + O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) + O(2)(-)(X(2)Π(g)). This process depends on the presence of solvent molecules and leads to vibrationally excited O(2)(-)(X(2)Π(g)) products.  相似文献   

4.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

5.
We report state-to-state cross sections and thermal rate constants for vibrational and rotational relaxation of OH(2pi) by collision with H atoms. The cross sections are calculated by the coupled-states (CS) statistical method including the full open-shell character of the OH + H system. Four potential energy surfaces (PESs) ((1,3)A' and (1,3)A') describe the interaction of OH(X2pi) with H atoms. Of these, three are repulsive, and one (1A') correlates with the deep H2O well. Consequently, rotationally and ro-vibrationally inelastic scattering of OH in collisions with H can occur by scattering on the repulsive PESs, in a manner similar to the inelastic scattering of OH by noble gas atoms, or by collisions which enter the H2O well and then reemerge. At 300 K, we predict large (approximately 1 x 10(-10) cm3 molecule(-1) s(-1)) vibrational relaxation rates out of both v = 2 and v = 1, comparable to earlier experimental observations. This anomalously fast relaxation results from capture into the H2O complex. There exists a significant propensity toward formation of OH in the pi(A') lambda-doublet level. We also report state-resolved cross sections and rate constants for rotational excitation within the OH v = 0 manifold. Collisional excitation from the F1 to the F2 spin-orbit manifold leads to an inverted lambda-doublet population.  相似文献   

6.
The intrinsically multireference dissociation of the C-N bond in ground-state diazomethane (CH(2)N(2)) at different angles has been studied with the multireference Brillouin-Wigner coupled-cluster singles and doubles (MRBWCCSD) method. The morphology of the calculated potential energy surface (PES) in C(s)() symmetry is similar to a multireference perturbational (CASPT3) PES. The MRBWCCSD/cc-pVTZ H(2)C-N(2) dissociation energy with respect to the asymptotic CH(2)(?(1)A(1)) + N(2)(X(1)Sigma(g)(+)) products is D(e) = 35.9 kcal/mol, or a zero-point corrected D(0) = 21.4 kcal/mol with respect to the ground-state CH(2)(X(3)B(1)) + N(2)(X(1)Sigma(g)(+)) fragments.  相似文献   

7.
The C(2) molecule exhibits unusual bonding and several low-lying excited electronic states, making the prediction of its potential energy curves a challenging test for quantum chemical methods. We report full configuration interaction results for the X (1)Sigma(g) (+), B (1)Delta(g), and B(') (1)Sigma(g) (+) states of C(2), which exactly solve the electronic Schrodinger equation within the space spanned by a 6-31G( *) basis set. Within the D(2h) subgroup used by most electronic structure programs, these states all have the same symmetry ((1)A(g)), and all three states become energetically close for interatomic distances beyond 1.5 A. The quality of several single-reference ab initio methods is assessed by comparison to the benchmark results. Unfortunately, even coupled-cluster theory through perturbative triples using an unrestricted Hartree-Fock reference exhibits large nonparallelity errors (>20 kcal mol(-1)) for the ground state. The excited states are not accurately modeled by any commonly used single-reference method, nor by configuration interaction including full quadruple substitutions. The present benchmarks will be helpful in assessing theoretical methods designed to break bonds in ground and excited electronic states.  相似文献   

8.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

9.
10.
Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.  相似文献   

11.
The collisional removal of vibrationally excited OH radicals by O atoms is studied by the quasiclassical trajectory method. To evaluate the effect of different topological features on the scattering processes two different global potential energy surfaces, DMBE IV and TU, are used. Results for reactive, exchange, and inelastic scattering probabilities are reported for central collisions (with zero total angular momentum) with a fixed relative translational energy for vibrational levels of OH ranging from nu=1 to v=8. Vibrational state distributions of product molecules are also compared on the two potential energy surfaces. Both surfaces predict higher probabilities for reaction than for exchange or inelastic scattering. The vibrational state distributions of the product diatomic molecules are different on the two surfaces. In particular, the two surfaces give substantially different probabilities for multiquantum OH vibrational relaxation transitions OH(v)+O-->OH(v')+O.  相似文献   

12.
We report a laboratory measurement of the rate coefficient for the collisional removal of O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms. In the experiments, 266-nm laser light photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O(2)(a(1)Delta(g)) that is rapidly converted to O(2)(X(3)Sigma(g) (-),upsilon=1-3) in a near-resonant electronic energy-transfer process with ground-state O(2). In parallel, a large amount of O((1)D) atoms is generated that promptly relaxes to O((3)P). Under the conditions of the experiments, only collisions with the photolytically produced O((3)P) atoms control the lifetime of O(2)(X(3)Sigma(g) (-),upsilon=1), because its removal by molecular oxygen at room temperature is extremely slow. Tunable 193-nm laser light monitors the temporal evolution of the O(2)(X(3)Sigma(g) (-),upsilon=1) population by detection of laser-induced fluorescence near 360 nm. The removal rate coefficient for O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is (3.2+/-1.0)x10(-12) cm(3) s(-1) (2sigma) at a temperature of 315+/-15 K (2sigma). This result is essential for the analysis and correct interpretation of the 6.3-mum H(2)O(nu(2)) band emission in the Earth's mesosphere and indicates that the deactivation of O(2)(X (3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is significantly faster than the nominal values recently used in atmospheric models.  相似文献   

13.
An alignment effect in the dissociative energy transfer reaction of Ar((3)P(2))+(X(2)O)(n)(X=N,H) was directly measured using an oriented Ar((3)P(2),M(J)=2) beam. The chemiluminescence intensity of N(2)(B,(3)Pi(g)) for (N(2)O)(n) and OH(A,(2)Sigma(+)) for (H(2)O)(n) was measured as a function of the magnetic orientation field direction in the collision frame. The relative reaction cross section for each magnetic substate in the collision frame, sigma(M(J) (') ), was determined. In both the reaction systems, it is observed that the dimer formation significantly enhances the alignment effect and decreases the reactivity, especially for sigma|1| and sigma|2|. A significant contribution of rank 4 moment is recognized in the dimer reaction.  相似文献   

14.
Rotationally resolved pulsed field ionization and zero electronic kinetic energy photoelectron spectra for the transition F(2) (+)(X (2)Pi(g))<--F(2)(X (1)Sigma(g) (+)) have been recorded using the extreme ultraviolet coherence radiation. The vibrational energy spacings, rotational constants, and spin orbit coupling constants for the first three vibrational states of F(2) (+)(X (2)Pi(g)) have been determined accurately. The first adiabatic ionization potential (IP) of F(2) is determined as IP(F(2))=126 585.7+/-0.5 cm(-1). To determine the threshold E(tipp) for ion-pair production of F(2), the images of F(-)((1)S(0)) in the velocity mapping conditions have also been recorded at the photon energy of 126 751 cm(-1). Taking the Stark effect into account, the E(tipp) is determined as E(tipp)(F(2))=126 045+/-8 cm(-1) (15.628+/-0.001 eV). By combing the IP(F(2)) and the E(tipp)(F(2)) determined in this work and together with the reported ionization potential and electronic affinity of the F atom, the bond dissociation energies of F(2) and F(2) (+) are determined as D(0)(F(2))=1.606+/-0.001 eV and D(0)(F(2) (+))=3.334+/-0.001 eV, respectively.  相似文献   

15.
The (3)(1)Pi state of the NaCs molecule was studied by high resolution Fourier-transform spectroscopy. The (3)(1)Pi-->X (1)Sigma(+) laser induced fluorescence was excited by an Ar(+) ion laser or by a single-mode frequency-doubled cw Nd:YAG laser. The presence of argon buffer gas yielded rich rotational relaxation spectra allowing to enlarge the data set for the (3)(1)Pi state term values, as well as to observe Lambda splittings in a wide range of vibrational (v(')) and rotational (J(')) quantum numbers. The data field includes about 820 energy levels of (3)(1)Pi NaCs in the range from v(')=0 to 37 and from J(')=3 to 190, which corresponds to ca. 95% of the potential well depth. Direct fit of the potential energy curve to the level energies is realized using the inverted perturbation approach method; a set of Dunham coefficients is also presented.  相似文献   

16.
Infrared emission following the photolysis of SO(2) by a 193 nm laser pulse (20 ns duration) was recorded with 500 ns time and 10 cm(-1) spectral resolution. Spectral analyses of the time-resolved spectra revealed the vibrationally excited nascent SO population distribution as (v = 1)/(v = 2)/(v = 3)/(v = 4)/(v = 5) = 0.54 ± 0.04, 1.00 ± 0.03, 0.00 ± 0.03, 0.01 ± 0.03, and 0.10 ± 0.03. The nascent SO was found to be rotationally excited with an average rotational temperature around 1000 K for v = 1 and v = 2 levels and 300 K for the v = 5 level. The vibrationally excited SO likely originates from two distinct dissociation mechanisms; the v = 1 and 2 populations are generated through intersystem crossing between the C state and a repulsive state (2(3)A'), and the v = 5 population is generated through internal conversion from the C to the X state. Efficient V-V energy transfer from nascent vibrationally excited SO to SO(2)(ν(1)) is also observed. The appearance of the SO(2)(ν(1)) ν(1) = 2 emission, before that from the ν(1) = 1 population is consistent with the previous report that the Δν = -2 channel is more efficient than the Δν = -1 channel.  相似文献   

17.
Supercollision relaxation of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) with D35Cl is investigated using high-resolution transient IR diode laser absorption spectroscopy at 4.4 microm. Highly excited pyrazine is prepared by pulsed UV excitation at 266 nm, followed by rapid radiationless decay to the ground electronic state. The rotational energy distribution of the scattered DCl (v = 0,J) molecules with J = 15-21 is characterized by T(rot) = 755+/-90 K. The relative translational energy increases as a function of rotational quantum number for DCl with T(rel) = 710+/-190 K for J = 15 and T(rel) = 1270+/-240 K for J = 21. The average change in recoil velocity correlates with the change in rotational angular momentum quantum number and highlights the role of angular momentum in energy gain partitioning. The integrated energy-transfer rate for appearance of DCl (v = 0,J = 15-21) is k(2)(int) = 7.1x10(-11) cm3 molecule(-1) s(-1), approximately one-eighth the Lennard-Jones collision rate. The results are compared to earlier energy gain measurements of CO2 and H2O.  相似文献   

18.
A class of doubly excited electronic states of the hydrogen molecule is reported. The states are of Sigma(-) symmetry and are located ca. 200,000 cm(-1) above the ground state and about 75,000 cm(-1) above the ionization threshold. The electronic wave functions employed to described these states have been expanded in the basis of exponentially correlated Gaussian (ECG) functions with the nonlinear parameters variationally optimized. The lowest (3)Sigma and (1)Sigma states dissociate into hydrogen atoms in the n = 2 state, whereas the lowest (3)Sigma and (1)Sigma states have H(n = 2) and H(n = 3) as the dissociation products. All the four states are attractive and accommodate vibrational levels. The location of the vibrational energy levels has been determined by solving the radial Schr?dinger equation within the Born-Oppenheimer approximation.  相似文献   

19.
A new ab initio potential energy surface for the ground state of the NO-NO system has been calculated within a reduced dimensionality model. We find an unusually large vibrational dependence of the interaction potential which explains previous spectroscopic observations. The potential can be used to model vibrational energy transfer, and here we perform quantum scattering calculations of the vibrational relaxation of NO(v). We show that the vibrational relaxation for v = 1 is 4 orders of magnitude larger than that for the related O(2)(v) + O(2) system without having to invoke nonadiabatic mechanisms as had been suggested in the past. For highly vibrationally excited states, we predict a strong dependence of the rates on the vibrational quantum number as has been observed experimentally, although there remain important quantitative differences. The importance of a chemically bound isomer on the relaxation mechanism is analyzed, and we conclude it does not play a role for the values of v considered in the experiment. Finally, the intriguing negative temperature dependence of the vibrational relaxation rate constants observed in experiments was studied using an statistical model to include the presence of many asymptotically degenerate spin-orbit states.  相似文献   

20.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号