首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of spirooxazine-containing 2,2'-bipyridine ligands and their rhenium(i) tricarbonyl complexes has been designed and synthesized, and their photophysical, photochromic and electrochemical properties have been studied. The X-ray crystal structures of two of the complexes have been determined. Detailed studies showed that the emission properties of the complexes could readily be switched through photochromic reactions.  相似文献   

2.
Ngan TW  Ko CC  Zhu N  Yam VW 《Inorganic chemistry》2007,46(4):1144-1152
A series of zinc(II) diimine bis(thiolate) complexes with photochromic diarylethene-containing phenanthroline ligands was synthesized, and their photophysical and photochromic properties were studied. The X-ray crystal structures of two of these complexes have been characterized. All complexes exhibit strong 3LLCT phosphorescence at 510-620 nm in the solid state at 77 and 298 K and in EtOH-MeOH glass at 77 K. Detailed studies revealed that the absorption, emission, and electrochemical properties of the complexes could be readily switched via the photochromic ring-closing and ring-opening reactions.  相似文献   

3.
A series of multifunctional platinum(II) bipyridine complexes were designed, synthesized, and characterized by (1)H NMR, fast atom bombardment mass spectrometry (FAB-MS), and elemental analysis. Their electrochemical and photophysical properties were investigated. The photochromic properties of the spironaphthoxazine-containing complexes were also studied. Some of these complexes were shown to be capable of forming stable thermoreversible metallogels in organic solvents. In contrast to typical thermotropic organogels and metallogels, one of the complexes could form metallogels in dodecane and is very stable towards external stimuli. The photochromic activation parameters for the bleaching reaction of a representative spironaphthoxazine-containing complex in a dodecane gel were determined through kinetic studies at various temperatures. Lamellar liquid-crystalline behavior was also observed in one of the complexes, and the liquid-crystalline properties were studied by thermogravimetry analysis (TGA), polarized optical microscopy (POM), differential scanning calorimetry (DSC), variable-temperature X-ray diffraction (XRD), and variable-temperature infrared (IR) spectroscopy.  相似文献   

4.
A series of dithienylethene (DTE)-containing 2,2'-bipyridine ligands and their zinc(II) diacetate, zinc(II) dichloro, rhenium(I) tricarbonyl bromo, and ruthenium(II) bis(bipyridine) complexes have been designed and synthesized, and their photochromic, photophysical, and quadratic nonlinear optical properties have been studied. Upon UV irradiation at 350 nm, the ligands and complexes undergo ring closure of the DTE units, with a good to excellent photocyclization yield. In the case of the Re(I) and Ru(II) complexes, the photocyclization of the DTE units can also be triggered using visible light, upon excitation into the metal-to-ligand charge-transfer (MLCT) bands at 400 and 490 nm, respectively. Molecular quadratic nonlinear optical (NLO) responses of the complexes have been determined by using either the electrical field induced second harmonic generation (EFISH) or harmonic light scattering (HLS) technique at 1910 nm. These studies reveal a large increase of the second-order NLO activity after UV irradiation and subsequent formation of the ring-closed isomers. This efficient enhancement clearly reflects the delocalization of the π-electron system and the formation of strong push-pull chromophores in the closed forms. The combination of the photochromic DTE-based bipyridine ligand with luminescent Re(I) and Ru(II) fragments also allows the photoregulation of the emission, leading to an efficient quenching of the ligand-based 77 K luminescence and demonstrating that the photocontrol of two optical properties, linear and nonlinear, could be achieved by using the same photochromic ligand.  相似文献   

5.
The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.  相似文献   

6.
Metal complexes composed of bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands and M(hfac)(2) (M = Zn(II), Mn(II), and Cu(II)) were prepared, and their photoinduced coordination structural changes were studied. X-ray crystallographic analyses showed the formation of coordination polymers and discrete 1:2 complexes for bidentate and monodentate ligands, respectively. The complexes underwent reversible photochromic reactions by alternate irradiation with UV and visible lights in solution as well as in the single-crystalline phase. Upon photoirradiation with UV and visible light, the ESR spectra of the copper complexes of 1a reversibly changed. While the open-ring isomer gave an axial-type spectrum, the photogenerated closed-ring isomer showed a rhombic-type spectrum. This indicates that the photoisomerization induced the change in the coordination structure.  相似文献   

7.
Using 1H NMR spectroscopy and steady-state and time-resolved electronic spectroscopy, the optical properties of mono-and bis(styryl)pyridinium perchlorates and their complexes with Mg2+, Ba2+ cations were studied. The stability constants of the complexes were determined using spectrophotometric titration. The formation of inclusion complexes for Mg2+ and sandwich type complexes for Ba2+ results in fluorescence enhancement and increases the lifetimes of the excited states of the initial bis-styryl ligands. The variation of position of the styryl fragment in the pyridinium aromatic ring gives rise to photochromic crown ethers with different optical and photophysical characteristics and is also an easy route to bis(crown-ethers) of symmetrical and unsymmetrical structure. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2092–2100, November, 2007.  相似文献   

8.
The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.  相似文献   

9.
A series of binary and ternary rare earth complexes with para-substitued benzoic acids and 1,10-phenanthroline were synthesized. The phosphorescence spectra were measured and the lowest triplet state energies of ligands were determined, the phosphorescence lifetimes were obtained and intramolecular energy transfer mechanism between ligands was studied. The luminescence properties were also measured and were in agreement with the prediction. The energy match and intramolecular energy transfer process in these binary and ternary complexes were discussed in detail.  相似文献   

10.
The photophysical behavior for two photochromic Pt-terpyridine acetylide complexes containing pendant dithienylethenes (DTEs) bound to the metal through the alkynyl linkage is presented. Selective excitation of the Pt complex with visible light resulted in the metal-sensitized ring closing of the DTE unit. The central purpose of this study was to understand how excited state interactions govern the photophysics by correlating differences in the linkage of the two components with differences in the intramolecular energy transfer processes that occur between the Pt complex and the DTE. A series of model complexes without photochromic ligands were prepared and studied to elucidate the contributions of the triplet metal-to-ligand charge transfer and triplet intraligand states. It is demonstrated that reducing the orbital overlap of the metal-based and intraligand states by lengthening the linkage and eliminating a conjugated pathway is effective at dramatically decreasing the efficiency of intramolecular energy transfer. This is evidenced by the appearance of Pt-terpyridine based phosphorescence and a significant decrease in the observed rate of metal-sensitized ring closing of the DTE.  相似文献   

11.
Organic photochromic molecules are important for the design of photoresponsive functional materials, as switches and memories. Over the past 10 years, research efforts have been directed towards the incorporation of photoresponsive molecules into metal systems, in order either to modulate the photochromic properties, or to photoregulate the redox, optical and magnetic properties of the organometallic moieties. This review article focuses on some of the recent work reported within the last few years in the area of organometallic and coordination complexes containing photochromic ligands for the photoregulation of optical and nonlinear optical properties. The first part is related to photochromic 1,2-diarylethene (DAE)-containing metal complexes, examples of mono- and multi-DAE metal-based will be discussed. The second part deals with metal complexes incorporating spiropyran and spirooxazine derivatives.  相似文献   

12.
A series of tetracyanoruthenate(II) with chelating pyridyl N‐heterocyclic carbene ligands (NHC‐py) was synthesized and characterized. Their photophysical and electrochemical properties as well as the photochromic behavior of their dithienylethene‐containing complexes were studied. Photocyclization was found to take place upon irradiation into the metal‐to‐ligand charge transfer (MLCT) absorption bands of these complexes, and evidence is provided to support the triplet‐sensitizing reaction pathway.  相似文献   

13.
合成了5种对羧基苯基重氮基β-二酮化合物,并与光致变色化合物相连,得到5种新型的多功能化合物。用元素分析、IR、^1HNMR和MS确定了其结构;研究了其紫外-可见光谱、荧光光谱及光致变色性;对化合物与Eu生成的配合物与DNA相互作用的性能进行了初步探讨,并对不同配体的配合物与DNA相互作用的情况进行了比较。  相似文献   

14.
The ligands, 1-acetylferrocenehydrazinecarboxamide (HL1) and 1-acetylferrocenehydrazinecarbothioamide (HL2), and their Ni(II) and Co(II) complexes were synthesized. The properties of the synthesized compounds were determined by the elemental and spectroscopic analyses. Ni(II) and Co(II) acetates interact with the ligands at the molar ratios 1 : 1 and 1 : 2 to give coloured products. The complexes have octahedral geometry. The ligands are coordinated to Co(II) and Ni(II) centers via the azomethine nitrogen and thiolic sulfur /enolic oxygen atom. The ligands and their Co(II) and Ni(II) complexes were screened for antibacterial and antifungal activities. The Co(II) and Ni(II) complexes show enhanced inhibitory activity as compared to their parent ligands. The DNA cleavage activity of the Co(II) and Ni(II) complexes was determined by gel electrophoresis. It was shown that the complexes have better cleavage activity than the ligands. The antioxidant activity of the complexes was also evaluated and used to examine their scavenging ability on hydrogen peroxide.  相似文献   

15.
Transition‐metal complexes containing stimuli‐responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor–acceptor azobenzene derivatives that possess bipyridine groups connected to a 4‐dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD‐DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.  相似文献   

16.
Mixed-ligand inner complexes of praseodymium(III) containing coordinated glycine or methionine ions and tartaric acid were synthesized. The compositions of the complexes were determined, and their spectral and thermal properties were studied. The coordination modes of the ligands were determined based on the results.  相似文献   

17.
We report herein the synthesis and characterization of four new bisterpyridine dinuclear ruthenium complexes containing the dimethyldihydropyrene (DHP) photochrome as bridging ligand. A synthetic strategy has been developed based on a Suzuki coupling reaction to synthesize these novel terpyridine-DHPs. The reactivity of these different ligands and dinuclear ruthenium complexes with light was examined by (1)H NMR and monitoring the changes in their absorption spectra upon irradiation at controlled wavelengths. The free ligands and their corresponding ruthenium complexes all displayed photochromic properties with highly efficient conversion between the closed stable isomers (DHP) and their open forms (CPD). The properties of the compounds in their closed and open forms were investigated by cyclic voltammetry, spectroscopy, and luminescence measurements.  相似文献   

18.
Two new hybrid compounds, which belong to autocomplexes of the dinitroquinoline series and contain an NH spacer and fragments of photochromic fulgimides as donor components, were synthesized. These autocomplexes were used as ligands in the synthesis of cobalt-containing metal chelates. The spectral-kinetic study revealed that these compounds exhibit photochromism. The introduction of photochromic fulgimide moieties into the autocomplexes has no substantial effect on the spectral properties of the latter but influences the kinetics of photochromic transformations by decreasing their efficiency. Chelate complexes of the hybrid compounds with cobalt ions are characterized by the lowest efficiency of photochromic transformations due to a decrease in the intensity of activating radiation as a result of its absorption by the dinitroquinoline moieties, which are not conjugated with fragments of photochromic compounds. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1409–1416, July, 2008.  相似文献   

19.
Collision-induced dissociation of complexes of Cu+ bound to a variety of N-donor ligands (N-L) with Xe is studied using guided ion beam tandem mass spectrometry. The N-L ligands examined include pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline. In all cases, the primary and lowest-energy dissociation channel observed corresponds to the endothermic loss of a single intact N-L ligand. Sequential dissociation of additional N-L ligands is observed at elevated energies for the pyridine and 4,4-dipyridyl complexes containing more than one ligand. Ligand exchange processes to produce Cu+Xe are also observed as minor reaction pathways in several systems. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the neutral N-L ligands and the Cu+(N-L)x complexes. The relative stabilities of the various conformations of these N-L ligands and Cu+(N-L)x complexes as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G* optimized geometries. Excellent agreement between theory and experiment is observed for all complexes containing one or two N-L ligands, while theory systematically underestimates the strength of binding for complexes containing more than two N-L ligands. The ground-state structures of these complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd-hybridization and repulsive ligand-ligand interactions. The nature of the binding interactions in the Cu+(N-L)x complexes are examined via natural bond orbital analyses.  相似文献   

20.
Yam VW  Pui YL  Cheung KK 《Inorganic chemistry》2000,39(25):5741-5746
A series of novel luminescent dinuclear zinc(II) diimine complexes with bridging chalcogenolate ligands have been synthesized, in which the two zinc atoms were found to exist in different coordination environment. The luminescence and electrochemical behavior of these complexes have been studied. These complexes have also been shown to exhibit dynamic fluxional behavior in solution due to an exchange of the bridging and terminal thiolate ligands. The mechanism and kinetics of which have been investigated by variable-temperature 1H NMR studies. The X-ray crystal structure of [(bpy)Zn2(SC6H4-Cl-p)(mu-SC6H4-Cl-p)(mu-OAc)2] has also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号