首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of experimental and theoretical studies of dipole-bound negative ions of the highly polar molecules ethylene carbonate (EC, C3H4O3, mu=5.35 D) and vinylene carbonate (VC, C3H2O3, mu=4.55 D) are presented. These negative ions are prepared in Rydberg electron transfer (RET) reactions in which rubidium (Rb) atoms, excited to ns or nd Rydberg states, collide with EC or VC molecules to produce EC- or VC- ions. In both cases ions are produced only when the Rb atoms are excited to states described by a relatively narrow range of effective principal quantum numbers, n*; the greatest yields of EC- and VC- are obtained for n*(max)=9.0+/-0.5 and 11.6+/-0.5, respectively. Charge transfer from low-lying Rydberg states of Rb is characteristic of a large excess electron binding energy (Eb) of the neutral parent; employing the previously derived empirical relationship Eb=23/n*(max)(2.8) eV, the electron binding energies are estimated to be 49+/-8 meV for EC and 24+/-3 meV for VC. Electron photodetachment studies of EC- show that the excess electron is bound by 49+/-5 meV, in excellent agreement with the RET results, lending credibility to the empirical relationship between Eb and n*(max). Vertical electron affinities for EC and VC are computed employing aug-cc-pVDZ atom-centered basis sets supplemented with a (5s5p) set of diffuse Gaussian primitives to support the dipole-bound electron; at the CCSD(T) level of theory the computed electron affinities are 40.9 and 20.1 meV for EC and VC, respectively.  相似文献   

2.
The formation of negative ions in molecular beams of ethylene sulfite (ES, alternately called glycol sulfite or ethylene glycol, C(2)H(4)SO(3)) molecules has been studied using both Rydberg electron transfer (RET) and free electron attachment methods. RET experiments with jet-cooled ES show an unexpected broad profile of anion formation as a function of the effective quantum number (n(*)) of the excited rubidium atoms, with peaks at n(max)(*) approximately 13.5 and 16.8. The peak at n(max)(*) approximately 16.8 corresponds to an expected dipole-bound anion with an electron binding energy of 8.5 meV. It is speculated that the peak at n(max)(*) approximately 13.5 derives from the formation of a distorted C(2)H(4)SO(3)(-) ion. We suggest that quasifree electron attachment promotes the breaking of one ring bond giving a long-lived acyclic anion and term this process incomplete dissociative electron attachment. Theoretical calculations of plausible ionic structures are presented and discussed. Electron beam studies of ES reveal the presence of multiple dissociative attachment channels, with the dominant fragment, SO(2)(-), peaking at 1.3 eV and much weaker signals due to SO(3)(-), SO(-), and (ES-H)(-) peaking at 1.5, 1.7, and 0.9 eV, respectively. All of these products appear to originate from a broad temporary negative ion resonance centered at approximately 1.4 eV.  相似文献   

3.
Anionic states of guanine, which is the only nucleic acid base of which the anions have not yet been studied in either photoelectron spectroscopic (PES) or Rydberg electron transfer (RET) experiments, have been characterized for the four most stable tautomers of neutral guanine using a broad spectrum of electronic structure methods from the density functional theory, with the B3LYP exchange-correlation functional, to the coupled-cluster method, with single, double, and perturbative triple excitations. Both valence and dipole-bound anionic states were addressed. We identified some of the difficulties facing future PES or RET experiments on the anion of guanine. Even if guanine is successfully transferred to the gas phase without thermal decomposition, it is critical to have the canonical amino-oxo (G) and both amino-hydroxy (GH and GHN7H) tautomers in the beam, not only the most stable, a noncanonical, amino-oxo tautomer (GN7H), as the latter does not support an adiabatically bound anionic state. We also suggested a scheme for enrichment of gas-phase guanine with the canonical tautomer, which is not the most stable in the gas phase, but which is of main interest due to its biological relevance. The tautomers G, GN7H, and GHN7H support vertically bound valence anionic states with the CCSD(T) value of vertical detachment energy of +0.58, +0.21, and +0.39 eV, respectively. These anionic states are, however, adiabatically unbound and thus metastable. The vertical electronic stability of these valence anionic states is accompanied by serious "buckling" of the molecular skeleton. The G and GHN7H tautomers support dipole-bound states with the CCSD(T) values of adiabatic electron affinity of 65 and 36 meV, respectively. A contribution from higher-than-second-order correlation terms represents, respectively, 48 and 68% of the total vertical electron detachment energy determined at the CCSD(T) level.  相似文献   

4.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

5.
Electron solvation in methanol anion clusters, (MeOH)(n) (-) (n approximately 70-460), is studied by photoelectron imaging. Two isomers are observed: methanol I, with vertical binding energies (VBE) ranging from 2-2.5 eV, and methanol II, with much lower VBE's between 0.2 and 0.5 eV. The VBE's of the two isomers depend linearly on n(-1/3) with nearly identical slopes. We propose that the excess electron is internally solvated in methanol I clusters, whereas in methanol II it resides in a dipole-bound surface-state. Evidence of an excited state accessible at 1.55 eV is observed for methanol I.  相似文献   

6.
The interaction of SF(5)CF(3) with vacuum-UV radiation has been investigated by photon induced fluorescence spectroscopy. Total fluorescence yield and dispersed fluorescence spectra of SF(5)CF(3) were recorded in the 200-1000 nm fluorescence window. In all cases, the fluorescence spectra resemble those of CF(3)X (X = H, F, Cl, and Br) molecules. At photon energies below 20 eV, the emission is attributed to the excited CF(3) and CF(2) fragments. The threshold for the CF(3) emission is 10.2 +/- 0.2 eV, giving an upper limit estimate for the SF(5)-CF(3) bond dissociation energy of 3.9 +/- 0.3 eV. The excitation functions of the CF(3) and CF(2) emissions were measured in the photon energy range 13.6-27.0 eV. The resonant structures observed in SF(5)CF(3) are attributed to electronic transitions from valence to Rydberg orbitals, following similar assignments in CF(3)X molecules. The photoabsorption spectrum of SF(5)CF(3) shows features at the same energies, indicating a strong contribution from Rydberg excitations.  相似文献   

7.
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH3)n; n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05+/-0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng et al., J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74+/-0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16+/-0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V 0=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates.  相似文献   

8.
Electronic properties of water clusters (H2O)(n), with n=2, 4, 8, 10, 15, 20, and 30 molecules were investigated by sequential Monte Carlo/density-functional theory (DFT) calculations. DFT calculations were carried out over uncorrelated configurations generated by Monte Carlo simulations of liquid water with a reparametrized exchange-correlation functional that reproduces the experimental information on the electronic properties (first ionization energy and highest occupied molecular orbital-lowest unoccupied molecular orbital gap) of the water dimer. The dependence of electronic properties on the cluster size (n) shows that the density of states (DOS) of small water clusters (n>10) exhibits the same basic features that are typical of larger aggregates, such as the mixing of the 3a1 and 1b1 valence bands. When long-ranged polarization effects are taken into account by the introduction of embedding charges, the DOS associated with 3a1 orbitals is significantly enhanced. In agreement with valence-band photoelectron spectra of liquid water, the 1b1, 3a1, and 1b2 electron binding energies in water aggregates are redshifted by approximately 1 eV relative to the isolated molecule. By extrapolating the results for larger clusters the threshold energy for photoelectron emission is 9.6+/-0.15 eV (free clusters) and 10.58+/-0.10 eV (embedded clusters). Our results for the electron affinity (V0=-0.17+/-0.05 eV) and adiabatic band gap (E(G,Ad)=6.83+/-0.05 eV) of liquid water are in excellent agreement with recent information from theoretical and experimental works.  相似文献   

9.
Anions that exhibit dipole-bound singlet states have been proposed as a potential class of molecules that may be identified in the interstellar medium. Using high-level coupled cluster theory, we have computed the dipole moments, electron binding energies, and excited states of 14 neutral radicals and their corresponding closed-shell anions. We have calibrated our methods against experimental data for CH(2)CN(-) and CH(2)CHO(-) and demonstrated that coupled cluster theory can closely reproduce experimental dipole moments, electron binding energies, and excitation energies. Using these same methods, we predict the existence of dipole-bound excited states for six of the 14 previously unknown anions, including CH(2)SiN(-), SiH(2)CN(-), CH(2)SiHO(-), SiN(-), CCOH(-), and HCCO(-). In addition, we predict the existence of a valence-bound excited state of CH(2)SiN(-) with an excitation wavelength near 589 nm.  相似文献   

10.
MRCI results are reported for the vertical excitation energies (VEE) and oscillator strengths f of doublet states of OClO up to 11 eV, including 3b(1) → 4s, 4p, 3d, 5s, 5p, 4d, and most 1a(2), 8a(1), 5b(2) → 4s and 4p Rydberg states. The lowest Rydberg states 3b(1) → 4s and 3b(1) → 4p(x) have mixed valence-Rydberg character. The observed spectral bands were reassigned to include valence states which have generally higher oscillator strengths. The well-known valence state 1(2)A(2) has a VEE of 3.63 eV, and a relatively high f of 0.042. Overall, the calculated oscillator strengths are in good agreement with measured values. The lowest quartet state, 1(4)B(2), lies at 6.95 eV. Quartet Rydberg states start with 1a(2) → 4s at 9.28 eV. According to calculated vertical ionization potentials (VIP) of OClO, the second VIP at 12.59 eV is reassigned from 1(3)B(1) to 1(3)B(2) (ionization from 1a(2), rather than 8a(1)), and the third VIP at 12.63 eV from 1(1)B(1) to 1(3)B(1) (ionization from 8a(1)). Vertical electron detachment energies of OClO(-) have been calculated up to 8.9 eV. There is good agreement with experimental values.  相似文献   

11.
The binding energies of manganese cluster ions Mn(N)+ (N = 5-7) were determined by the photodissociation experiments in the near-infrared and visible-photon-energy ranges. The bond dissociation energies of Mn(N)+, D0(Mn(N-1)+...Mn), were obtained to be 1.70+/-0.08, 1.04+/-0.10, and 1.46+/-0.11 eV, respectively, for N = 5, 6, and 7 from the threshold energies for the two-atom loss processes and the bond dissociation energies of Mn3(+) and Mn4(+) reported previously [A. Terasaki et al., J. Chem. Phys. 117, 7520 (2002)]. Correspondingly, binding energies per atom are obtained to be 0.99+/-0.03, 1.00+/-0.03, and 1.06+/-0.03 eV/at. for N = 5, 6, and 7, respectively. A gradual increase in the binding energy from N = 2 to N = 7 shows an increasing contribution of nonbonding 3d orbitals to the bonding via weak hybridization with valence 4s orbitals as the cluster size increases. These binding energies per atom are still much smaller than the bulk cohesive energy of manganese (2.92 eV/at.), and this finding indicates exceptionally weak metal-metal bonds in this size range.  相似文献   

12.
This study utilizes photoelectron spectroscopy (PES) combined with theoretical methods to determine the electronic structure contributions to the large reduction potential difference between [FeCl(4)](2)(-)(,1)(-) and [Fe(SR)(4)](2)(-)(,1)(-) (DeltaE(0) approximately 1 V). Valence PES data confirm that this effect results from electronic structure differences because there is a similarly large shift in the onset of valence ionization between the two reduced species (DeltaI(vert) = 1.4 +/- 0.3 eV). Specific electronic contributions to DeltaI(vert) have been investigated and defined. Ligand field effects, which are often considered to be of great importance, contribute very little to DeltaI(vert) (DeltaE(LF) < -0.05 eV). By contrast, electronic relaxation, a factor that is often neglected in the analysis of chemical reactivity, strongly affects the valence ionization energies of both species. The larger electronic relaxation in the tetrathiolate allows it to more effectively stabilize the oxidized state and lowers its I(vert) relative to that of the chloride (DeltaE(rlx) = 0.2 eV). The largest contribution to the difference in redox potentials is the much lower effective charge () of the tetrathiolate in the reduced state, which results in a large difference in the energy of the Fe 3d manifold between the two redox couples (DeltaE(Fe)( )(3d) = 1.2 eV). This difference derives from the significantly higher covalency of the iron-thiolate bond, which decreases and significantly lowers its redox potential.  相似文献   

13.
A study of excited states of the NO dimer is carried out at 7.1-8.2 eV excitation energies. Photoexcitation is achieved by two-photon absorption at 300-345 nm followed by (NO)(2) dissociation and detection of electronically excited products, mostly in n=3 Rydberg states of NO. Photoelectron imaging is used as a tool to identify product electronic states by using non-state-selective ionization. Photofragment ion imaging is used to characterize product translational energy and angular distributions. Evidence for production of NO(A (2)Sigma(+)), NO(C (2)Pi), and NO(D (2)Sigma(+)) Rydberg states of NO, as well as the valence NO(B (2)Pi) state, is obtained. On the basis of product translational energy and angular distributions, it is possible to characterize the excited state(s) accessed in this region, which must possess a significant Rydberg character.  相似文献   

14.
《Chemical physics》1987,117(1):51-63
VUV (6.2–9 eV) and electron scattering spectra (1–9 eV) have been recorded for 2-methylpropene (isobutene). Also, electronic states of the molecule, including the ground state and cationic states, have been investigated using ab initio multi-reference configuration interaction calculations. Some Koopmans-type in the UV photoelectron spectrum are reassigned and a number of shake-up states computed. In the electronic spectrum, Rydberg excited have been assigned and a second valence excited state (σ π*) located within about 1 eV of the V(ππ*) state. The experiments show, and theory confirms, that the Rydberg R(π3s) state has a positive electron affinity. Some interesting correlations between ionisation energies, energies of shake-up state electronic excitation energies are identified.  相似文献   

15.
Excited-state geometries and electronic spectra of butadiene, acrolein, and glyoxal have been investigated by the symmetry adapted cluster configuration interaction (SAC-CI) method in their s-trans conformation. Valence and Rydberg states below the ionization threshold have been precisely calculated with sufficiently flexible basis sets. Vertical and adiabatic excitation energies were well reproduced and the detailed assignments were given taking account of the second moments. The deviations of the vertical excitation energies from the experiment were less than 0.3 eV for all cases. The SAC-CI geometry optimization has been applied to some valence and Rydberg excited states of these molecules in the planar structure. The optimized ground- and excited-state geometries agree well with the available experimental values; deviations lie within 0.03 A and 0.7 degrees for the bond lengths and angles, respectively. The force acting on the nuclei caused by the excitations has been discussed in detail by calculating the SAC-CI electron density difference between the ground and excited states; the geometry relaxation was well interpreted with the electrostatic force theory. In Rydberg excitations, geometry changes were also noticed. Doubly excited states (so-called 2 (1)A(g) states) were investigated by the SAC-CI general-R method considering up to quadruple excitations. The characteristic geometrical changes and large energetic relaxations were predicted for these states.  相似文献   

16.
The inner-shell C 1s photoionization of randomly oriented molecules of the chiral compound carvone has been investigated using circularly polarized synchrotron radiation up to 30 eV above threshold. Binding energies of the C=O and CH2= carbon 1s orbitals were determined to be 292.8+/-0.2 and 289.8+/-0.2 eV, respectively. The remaining C-H C 1s levels substantially overlap under an intense central peak centered at 290.5+/-0.2 eV. The angle-resolved photoemission from the carbonyl carbon C=O core orbital in pure carvone enantiomers shows a pronounced circular dichroism of approximately 6% at the magic angle of 54.7 degrees to the light beam propagation direction. This corresponds to an expected 0 degrees -180 degrees forward-backward electron emission asymmetry of approximately 10%. On changing between the R and S enantiomers of carvone the sense or sign of the asymmetry and associated dichroism effectively reverses. The observed circular dichroism, and its energy dependence, is well accounted for by calculations performed in the pure electric dipole approximation.  相似文献   

17.
Ionization energies of hypervalent Li(2)F, Li(2)Cl and Na(2)Cl molecules detected by surface ionization electron impact neutralization mass spectrometry are reported. The ionization energies were 3.78 +/- 0.2 eV for Li(2)F, 4.93 +/- 0.2 eV for Li(2)Cl, and 4.21 +/- 0.2 eV for Na(2)Cl. The ionization energies (IE) agree with theoretical ionization energies calculated by ab initio methods, supporting the theoretical prediction that Li(2)F has a hyperlithiated configuration in which the odd electron delocalizes over the two lithiums and with photoionization measurement. The first ionization energy of Na(2)Cl was experimentally confirmed earlier and for Li(2)Cl as well.8 We have developed and used this new approach for the problem--in the present work ions were first formed by surface ionization, followed by electron attachment (neutralization).  相似文献   

18.
Several cyanosilylenes, XSiCN, (X = H, F, Cl, CH3, SiH3, CN) have been investigated using the RHF-ACPF and CAS(2,2)-ACPF methods in conjunction with the aug-cc-pVTZ basis sets. All silylenes are found to have singlet ground states. The ground-state electron affinities are found to be rather high, i.e., 1.832, 1.497, 1.896, 1.492, 2.235, and 2.631 eV for HSiCN, FSiCN, ClSiCN, H3CSiCN, H3SiSiCN, and Si(CN)2, respectively. The existence of bound excited negative ion states has been discovered for the first time within these silylenes. All these bound excited anion states belong to the totally symmetric irreducible representations and can be characterized as dipole-bound negative ion states. All triplet excited states have even larger dipole moments than the singlet states and are, therefore, "dressed" by dipole-bound negative ion states, which correspond to Feshbach resonances.  相似文献   

19.
Negative ions of transition metal-halogen clusters   总被引:1,自引:0,他引:1  
A systematic density functional theory based study of the structure and spectroscopic properties of neutral and negatively charged MX(n) clusters formed by a transition metal atom M (M=Sc,Ti,V) and up to seven halogen atoms X (X=F,Cl,Br) has revealed a number of interesting features: (1) Halogen atoms are bound chemically to Sc, Ti, and V for n≤n(max), where the maximal valence n(max) equals to 3, 4, and 5 for Sc, Ti, and V, respectively. For n>n(max), two halogen atoms became dimerized in the neutral species, while dimerization begins at n=5, 6, and 7 for negatively charged clusters containing Sc, Ti, and V. (2) Magnetic moments of the transition metal atoms depend strongly on the number of halogen atoms in a cluster and the cluster charge. (3) The number of halogen atoms that can be attached to a metal atom exceeds the maximal formal valence of the metal atom. (4) The electron affinities of the neutral clusters abruptly rise at n=n(max), reaching values as high as 7 eV. The corresponding anions could be used in the synthesis of new salts, once appropriate counterions are identified.  相似文献   

20.
The diatomic molecules SiPb and GePb were for the first time identified by producing high temperature vapors of the constituent pure elements in a "double-oven-like" molecular-effusion assembly. The partial pressures of the atomic, heteronuclear, and homonuclear gaseous species observed in the vapor, namely, Si, Ge, Pb, SiPb, GePb, Pb2, Gen, and Sin (n=2-3), were mass-spectrometrically measured in the overall temperature ranges 1753-1961 K (Ge-Pb) and 1992-2314 K (Si-Pb). The dissociation energies of the new species were determined by second- and third-law analyses of both the direct dissociation reactions and isomolecular exchange reactions involving homonuclear molecules. The selected values of the dissociation energies at 0 K (D0 degrees) are 165.1+/-7.3 and 141.6+/-6.9 kJ/mol, respectively, for SiPb and GePb, and the corresponding enthalpies of formation (DeltafH0 degrees) are 476.4+/-7.3 and 419.3+/-6.9 kJ/mol. The ionization efficiency curves of the two species were measured, giving the following values for the first ionization energies: 7.0+/-0.2 eV (SiPb) and 7.1+/-0.2 eV (GePb). A computational study of the species SiPb and GePb was also carried out at the CCSD(T) level of theory using the relativistic electron core potential approach. Molecular parameters, adiabatic ionization energies, adiabatic electron affinities, and dissociation energies of the title species were calculated, as well as the enthalpy changes of the exchange reactions involving the other Pb-containing diatomics of group 14. Finally, a comparison between the experimental and theoretical results is presented, and from a semiempirical correlation the unknown dissociation energies of the SiSn and PbC molecules are predicted as 234+/-7 and 185+/-11 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号