首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio calculations on the low-lying electronic states of SiF+ are performed using the internally contracted multireference configuration interaction method with the Davidson correction and entirely uncontracted aug-cc-pV5Z basis set. The effects of spin-orbit coupling are accounted for by the state interaction approach with the full Breit-Pauli Hamiltonian. The entire 23 Omega states generated from the 12 valence Lambda-S states, which correlate with the first dissociation channel are studied for the first time. Good agreement is found between the calculated results and the available experimental data. The spin-orbit coupling effects on the potential energy curves and spectroscopic properties are studied. Various curve crossings are revealed, which could lead to the predissociation of the a3Pi, A1Pi, and (2)3Sigma+ states and the predissociation pathways are analyzed based upon the calculated spin-orbit matrix elements. The calculated ionization potentials of the ground-state SiF to a few states of SiF+ are in good agreement with the available experimental measurements. Moreover, the transition dipole moments of the dipole-allowed transitions and the transition properties for the A3Pi0+ -X1Sigma+ 0+ and B3Pi1-X1Sigma+ 0+ transitions are predicted, including the Franck-Condon factors and the radiative lifetimes.  相似文献   

2.
We report extensive spectroscopic measurements of rovibronic transitions from the MgO X 1Sigma+ ground state to the high-energy E 1Sigma+, F 1Pi1, and G 1Pi1 Rydberg states. Perturbations in the E 1Sigma+ and G 1Pi1 states were observed. The Rydberg molecular orbital character of the three states is examined, given ab initio calculations by Thummel et al. [Chem. Phys. 129, 417 (1989)]. It is concluded that the E 1Sigma+ and G 1Pi1 states consist primarily of the MgO+ X 2Pi ionic core, surrounded by 3ppi and 3psigma Rydberg electron clouds, respectively, and that the F 1Pi1 state consists primarily of the MgO+ A 2Sigma+ ionic core surrounded by a 3ppi Rydberg electron cloud. Spectroscopic characterizations of some unassigned vibrational levels of analogous MgO 3Pi2 states in this energy region are also reported.  相似文献   

3.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

4.
The predissociation data for the 1 (1)Pi state of (39)K(85)Rb of Kasahara et al. [J. Chem. Phys. 111, 8857 (1999)] are combined with the recent determination of the long range C(6) coefficients of the predissociating 2 (3)Sigma(+) approximately 2(0(-)), 2(1) states [Wang et al., Eur. Phys. J. D31, 165 (2004) ] molecule: to infer a more precise dissociation energy of the (39)K(85)Rb molecule D(0)=4180.06+/-0.42 cm(-1) and D(e)=4217.91+/-0.42 cm(-1).  相似文献   

5.
The predissociation dynamics of hydrogen chloride ions (HCl+ and DCl+) in the electronic A 2Sigma+ state has been investigated by solving the time dependent Schr?dinger equation. The predissociation lifetime is shown to strongly depend on the vibrational and the rotational quantum number, with quasi-periodic oscillations. Rovibronic states, which exhibit lifetimes about 1 order of magnitude larger than those of neighboring states, are termed rotational islands of stability (RIS). These RIS can be correlated with characteristic reference energies, e.g., the difference between rovibronic eigenenergy and the energy of crossing of rotronic bound and repulsive potentials. The origin of these RIS is illustrated by model studies of the positions of the nuclear wave functions involved.  相似文献   

6.
Rotational analyses have been carried out at high resolution for the 000-000 and 000-100 bands of the A (1)Pi(u)-X (1)Sigma(g) (+) transition of supersonic jet-cooled C(3). Two different spectra have been recorded for each band, using time gatings of 20-150 and 800-2300 ns. At the shorter time delay the spectra show only the lines observed by many previous workers. At the longer time delay many extra lines appear, some of which have been observed previously by [McCall et al.Chem. Phys. Lett. 374, 583 (2003)] in cavity ring-down spectra of jet-cooled C(3). Detailed analysis of these extra lines shows that at least two long-lived states perturb the A (1)Pi(u), 000 state. One of these appears to be a (3)Sigma(u) (-) vibronic state, which may possibly be a high vibrational level of the b (3)Pi(g) state, and the other appears to be a P = 1 state with a low rotational constant B. Our spectra also confirm the reassignment by McCall et al. of the R(0) line of the 000-000 band, which is consistent with the spectra recorded towards a number of stars that indicate the presence of C(3) in the interstellar medium. Fluorescence lifetimes have been measured for a number of upper-state rotational levels. The rotational levels of the A (1)Pi(u) state have lifetimes in the range of 230-190 ns, decreasing slightly with J; the levels of the perturbing states have much longer lifetimes, with some of them showing biexponential decays. An improved value has been obtained for the nu(1) vibrational frequency of the ground state, nu(1) = 1224.4933 +/- 0.0029 cm(-1).  相似文献   

7.
Highly correlated ab initio methods have been used to generate one-dimensional cuts of the six-dimensional potential energy surfaces of the quartet and lowest doublet states for the HCCH(+) ion along the CH, CC, and cis and trans bending coordinates. Transition dipole moments and spin-orbit matrix elements are deduced. For the lowest 1 (4)Sigma(u) (+) state, the calculations predict a possible photon emission through the 1 (4)Pi(g)<--1 (4)Sigma(u) (+) transition competing with internal conversion and predissociation processes. The potential surfaces are used together with spin-orbit matrix elements to discuss the metastability and the predissociation processes forming the C(2)HC(2)H(+)+H(+)H products. Multistep spin-orbit induced predissociation pathways are suggested.  相似文献   

8.
Separate coupled-channel Schr?dinger-equation (CSE) models of the interacting (1)Pi(u) (b,c,o) and (3)Pi(u) (C,C(')) states of N(2) are combined, through the inclusion of spin-orbit interactions, to produce a five-channel CSE model of the N(2) predissociation. Comparison of the model calculations with an experimental database, consisting principally of detailed new measurements of the vibrational and isotopic dependence of the (1)Pi(u) linewidths and lifetimes, provides convincing evidence that the predissociation of the lowest (1)Pi(u) levels in N(2) is primarily an indirect process, involving spin-orbit coupling between the b (1)Pi(u)- and C (3)Pi(u)-state levels, the latter levels themselves heavily predissociated electrostatically by the C(') (3)Pi(u) continuum. The well-known large width of the b(v=3) level in (14)N(2) is caused by an accidental degeneracy with C(v=9). This CSE model provides the first quantitative explanation of the predissociation mechanism for the dipole-accessible (1)Pi(u) states of N(2), and is thus likely to prove useful in the construction of realistic radiative-transfer and photochemical models for nitrogen-rich planetary atmospheres.  相似文献   

9.
The authors report new differential cross section measurements for electron impact excitation of the A (1)Pi(v(')) states of carbon monoxide. The energy range is 20-200 eV. They also reanalyze the A (1)Pi(v(')) manifold cross sections of Middleton et al. [J. Phys. B 26, 1743 (1993)] in order to provide a basis for comparison with our new vibrationally resolved differential cross sections. Excellent agreement is found between the two sets of measurements at all common energies. From 20 to 200 eV the present differential cross sections are extrapolated and integrated, and the corresponding integral excitation cross sections determined. New scaled Born integral cross sections, calculated as a part of the present study, are compared against these experimental integral cross sections, with excellent agreement being found for all the A (1)Pi(v(')=0-7)<--X (1)Sigma(g) (+)(v(")=0) transitions. In addition our scaled Born integral cross sections are found to be in excellent agreement between 300 and 1500 eV with those derived from the previous experiments of Lassettre and Skerbele [J. Chem. Phys. 54, 1597 (1971)] and of Zhong et al. [Phys. Rev. A 55, 1799 (1997)] and from near threshold to 15 eV with those derived from Zobel et al. [J. Phys. B 29, 813 (1996)] and Zetner et al. (J. Phys. B 31, 2395 (1998)].  相似文献   

10.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

11.
Highly correlated ab initio methods were used in order to generate the potential-energy curves of the SO+ electronic states correlating to S+(4Su)+O(3Pg) and S+(2Du)+O(3Pg). These curves were used for deducing accurate spectroscopic properties for these electronic states. Our calculations predict the existence of a 2Phi state lying close in energy to the well-characterized b 4Sigma- state and several weakly bound quartet and doublet states located in the 6-9 eV internal energy range not identified yet. The spin-orbit integrals between these electronic states were evaluated using these highly correlated wave functions, allowing the discussion of the metastability and the predissociation processes forming S+ +O in their electronic ground states. Multistep spin-orbit-induced predissociation pathways are suggested. More specifically, the experimentally determined dissociative potential-energy curve [H. Bissantz et al., Z. Phys. D 22, 727 (1992)] proposed to explain the rapid SO+(b 4Sigma-, v> or =13)-->S+(4Su)+O(3Pg) reaction is found to coincide with the 2 4Pi potential-energy curve for short internuclear distances and with the repulsive 1 6Pi state for longer internuclear separations.  相似文献   

12.
13.
The fine and hyperfine interaction parameters in the A (2)Pi(1/2)(v=0) and X (2)Sigma(+)(v=0) states of the odd metal nuclear spin isotopologues of ytterbium monofluoride, (171)YbF and (173)YbF, have been determined from an analysis of high-resolution laser induced fluorescence spectra of the A (2)Pi(12)<--X (2)Sigma(+)(0,0) band. The observed ground X (2)Sigma(+)(v=0) state (171)Yb(I=1/2) Fermi contact parameter is significantly smaller than that determined from the matrix isolation electron spin resonance measurement [Van Zee et al., J. Phys. Chem. 82, 1192 (1978)]. An interpretation of the (173,171)Yb magnetic hyperfine and nuclear electric quadrupole coupling parameters is given.  相似文献   

14.
Potential energy curves for the 28 lowest LambdaSigma states and 49 Omega states of RbCs are obtained from large-scale multireference configuration interaction calculations using both spin-averaged and two-component spin-orbit energy-consistent effective core potentials. Spectroscopic properties of all states are compared across available data in literature to date. Variations of the permanent dipole moments on the internuclear separation (R) for the (1)Sigma(+), (3)Sigma(+), (1)Pi, and (3)Pi states are evaluated over a wide range of R. The most important effects of the spin-orbit interaction on the dipole moment distribution are discussed.  相似文献   

15.
Direct deperturbation analysis of the highly accurate experimental rovibronic term values of the A (2)Pi approximately B (2)Sigma(+) complex of LiAr [R. Bruhl and D. Zimmermann, J. Chem. Phys. 114, 3035 (2001)] has been performed in the framework of inverted close-coupling approach implicitly adjusted to the unified treatment of the overall A approximately B coupling effect without reducing the rovibrational dimensionality. The nonlinear fitting procedure was supported by the ab initio calculations on the spin-orbit and angular coupling matrix elements between the lowest X (2)Sigma(+), A (2)Pi, and B (2)Sigma(+) states. The analytical grid mapping based on the reduced variable representation of the radial coordinate r was used to improve the efficiency of the solution of the close-coupling radial equations near the dissociation limit. The mutual A approximately X perturbation effect on the A (2)Pi term values and spin-rotation splitting of the ground state were evaluated for both (7,6)LiAr isotopomers. The resulting empirical potential-energy curves for the adiabatic A (2)Pi and B (2)Sigma(+) states, along with the refined r-dependent nonadiabatic matrix elements, reproduce the total rovibronic structure of the (7)LiAr complex with the standard deviation of 0.003 cm(-1). The mass invariance of the deperturbed electronic parameters was confirmed by the calculation of the rovibronic term values of the (6)LiAr isotopomer which coincided with their experimental counterparts within 0.004 cm(-1).  相似文献   

16.
Rotationally cold absorption and two-photon ionization spectra of CO in the 90-100 nm region have been recorded at a resolution of 0.3-1.0 cm(-1). The analyses of up to four isotopomers seek to clarify the observations in regions where the Rydberg levels built on the ground state X (2)Sigma(+) of the ion interact with valence states of (1)Sigma(+) and (1)Pi symmetry. Previous observations of the 3ssigma, B (1)Sigma(+) Rydberg state, reviewed by Tchang-Brillet et al. [J. Chem. Phys. 96, 6735 (1992)], have been extended to energies above its avoided crossing with the repulsive part of the D(') (1)Sigma(+) valence state where resonances of varying intensities and widths have been attributed to the fully coupled 3ssigma or 4ssigma and D(') potentials, and where the B state approaches a second avoided crossing with the C(') (1)Sigma(+) valence state [Cooper and Kirby, J. Chem. Phys. 87, 424 (1987); 90, 4895 (1989); Chem. Phys. Lett. 152, 393 (1988)]. Fragments of a progression of weak and mostly diffuse bands, observed for all four isotopomers, have been assigned to the C(')<--X transition. The least-squares modeling of the 4p and 5p complexes reveals the 3ppi, E (1)Pi Rydberg state to be one of the perturbers, violating the Deltav=0 selection rule for Rydberg-Rydberg interactions on account of its rapid transition with increasing v from Rydberg to valence state. A second (1)Pi perturber, very loosely bound and clearly of valence type, contributes to the confusion in the published literature surrounding the 5p, v=0 complex.  相似文献   

17.
In sodium dimer the 2 (3)Pi(g), 3 (3)Pi(g), and 4 (3)Sigma(g) (+) electronic states are coupled; the coupling of the two (3)Pi(g) states is due to vibrational motion while the nonadiabatic interaction between the (3)Sigma(g) (+) and the (3)Pi(g) states-in particular, the 3 (3)Pi(g) state-is mediated by rotational interaction. The resulting vibronic problem is studied in some detail. The bound vibrational states of the 3 (3)Pi(g) and 4 (3)Pi(g) (+) states lie in the dissociation continuum of the 2 (3)Pi(g) state and become resonances due to the prevailing nonadiabatic coupling. The resonances are calculated using the complex scaling method and the available ab initio adiabatic potential energy curves. It is demonstrated that the resonances associated with rotational nonadiabatic coupling are narrower by several orders of magnitude than those that emerge from the vibrational nonadiabatic coupling. The predissociation cross section is computed and compared with experiment.  相似文献   

18.
The lowest Omega = 0-,0+,1,2 fine-structure potential energy curves arising from the two lowest-lying singlet (X 1Sigma+ and 2 1Sigma+) and the first 3Pi electronic states of AgI were obtained through an effective Hamiltonian; the purely electronic LambdaSSigma energies were used as diagonal elements, which were calculated through extensive complete active space self-consistent field + averaged coupled pair functional calculations, with relativistic effective core potentials and optimized Gaussian basis sets for both atoms. The spin-orbit interactions were included using the Stuttgart effective spin-orbit potentials. For the excited Omega = 0+ states, very strong mixtures were found of the 2 1Sigma+ and 3Pi parents that lead to the fine-structure (0+) single B state (dominated by the 2 1Sigma+ parent at long distance), that explains the B <-- X transitions. The present results also explain the presence of a second long-distance minimum for the B0+ state, experimentally Rydberg-Klein-Rees fitted. These calculations produced, as a byproduct, a new lower-lying Omega = 0+ yet unobserved fine-structure state predicted to exist around 22,000 cm(-1). Our theoretical results are compared and discussed in the light of the experimental data for the B-X transitions in silver halides [J. Chem. Phys. 109, 9831 (1998)].  相似文献   

19.
The vibronic structure of the closely spaced and strongly coupled X 2Sigma+ and A 2Pi states in the photodetachment spectra of CCCl- and CCBr- has been calculated by considering Sigma-Pi vibronic coupling together with spin-orbit coupling. The stretching modes are treated within the so-called linear-vibronic-coupling model. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations. While the nonrelativistic vibronic-coupling parameters are of approximately equal strength in CCCl and CCBr, the vibronic-coupling parameters of spin-orbit origin are found to be larger in the latter. The calculated photodetachment spectra of both systems are shown to exhibit a complicated vibronic structure due to strong Sigma-Pi vibronic coupling. The spectral envelopes of the calculated photodetachment spectra exhibit a double-hump reminiscent of strongly coupled Exe Jahn-Teller systems.  相似文献   

20.
The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号