首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometry configurations of a large fraction of the kindling fluorescent protein asFP595 around the chromophore region were optimized by using the effective fragment potential quantum mechanical-molecular mechanical (QM/MM) method. The initial coordinates of heavy atoms were taken from the structure from the Protein Data Bank archive corresponding to the dark-adapted state of the Ala143 --> Gly mutant of asFP595. Optimization of geometry parameters was performed for all internal coordinates in the QM part composed of the chromophore unit and the side chains of His197, Glu215, and Arg92 as well as for positions of effective fragments constituting the MMpart. The structures corresponding to the anion trans, anion cis, and zwitterion trans moieties were considered among various alternatives for the chromophore unit inside the protein matrix. The QM/MM simulations show that the protein environment provides stabilization for the trans-zwitterion isomer compared to the gas-phase conditions. By using the multiconfigurational CASSCF and the time-dependent density functional theory calculations, we estimated positions of spectral bands corresponding to vertical S(0)-S(1) transitions. The results of simulations support the assumption that the dark state of asFP595 corresponds to the anionic or zwitterionic trans-conformation, while the kindled state corresponds to the anionic cis-conformation.  相似文献   

2.
Green fluorescent proteins (GFPs) are widely used as tools in biochemistry, cell biology, and molecular genetics due to their unusual optical spectroscopic characteristics. The spectrophotometric and fluorescence properties of GFPs are controlled by the protonation states and possibly cis-trans isomerization of the chromophore (p-hydroxybenzylideneimidazolinone). In this work, we have investigated electronic structures, liquid structures, and solvent shifts of the three possible protonated states (neutral, anionic, and zwitterionic) and their cis-trans isomerization of a model compound 4'-hydroxybenzylidene-2-methyl-imidazolin-5-one-3-acetate (HBMIA) in aqueous solutions. Our calculated results suggest that HBMIA could adopt both cis and trans conformations in a solution, and it exists in three different protonation states depending on the pH conditions. The absorption spectrum observed in neutral solution is thus assigned to the electronic excitations within the neutral form and the cis isomer of the zwitterionic form, while the absorption band at 425 nm in the basic solution is due to the excitations within the anionic form and the trans isomer of the zwitterionic form. Some technical problems related to the computation of electronic excitations within the HBMIA at the anionic state are also discussed.  相似文献   

3.
The ground and excited state properties (e.g., the intramolecular charge and energy transfer, and electron‐hole coherence) of the chromophore of the asFP595 chromoprotein from Anemonia sulcata in the neutral and anionic forms are theoretically studied with quantum chemistry methods. The ground‐state properties of the asFP595 in the neutral and anionic forms, such as the alternations of the bond lengths and the Mulliken charge distributions, are compared. The calculated transition energies of the asFP595 in the neutral and anionic form are consistent with the experimental results. To study the excited state properties of the asFP595 chromophore, the energies and densities of highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs), as well as the CI main coefficients, are compared between the two forms. The intramolecular charge and energy transfer in the neutral and anionic forms are investigated and compared with the three‐dimensional (3D) real‐space analysis methods, including the strength and orientation of the transition dipoles with transition density, and the orientation and result of the intramolecular charge transfer with charge difference density. The electron‐hole coherence and delocalization on the excitation are studied with the 2D real‐space analysis method of the transition density matrix. In all, the calculated results are remain in good agreement with the experimental data, and the theoretical analysis results supported the proposed models in the experiment. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
An important class of red fluorescent proteins (RFPs) feature a 2-iminomethyl-5-(4-hydroxybenzylidene)imidazolinone chromophore. Among these proteins, eqFP611 has the chromophore in a coplanar trans orientation, whereas the cis isomer is preferred by other RFPs such as DsRed and its variants. In the photoactivatable protein asFP595, the chromophore can even be switched from the nonfluorescent trans to the fluorescent cis state by light. By using X-ray crystallography, we have determined the structure of dimeric eqFP611 at high resolution (up to 1.1 A). In the far-red emitting eqFP611 variant d2RFP630, which carries an additional Asn143Ser mutation, the chromophore resides predominantly (approximately 80%) in the cis isomeric state, and in RFP639, which has Asn143Ser and Ser158Cys mutations, the chromophore is found completely in the cis form. The pronounced red shift of excitation and emission maxima of RFP639 can thus unambiguously be assigned to trans-cis isomerization of the chromophore. Among RFPs, eqFP611 is thus unique because its chromophore is highly fluorescent in both the cis and trans isomeric forms.  相似文献   

5.
We investigate the electronic and structural properties of the chromophore of the asCP/asFP595, a newly discovered protein of the (green) fluorescent protein family. The use of theoretical methods with different degrees of accuracy and efficiency (DFT, TDDFT, CASSCF and perturbative corrections) allows us to compare the properties of a large number of hypothetic molecular models for the chromophore. The models are sorted on the basis of the relative stability and through a comparison with the experimental values of the excitation energy. Our study indicates that the most probable structure of the photoactive moiety in the protein and in water is the one resulting from the GFP-like rather than the "alternative" cyclization scheme.  相似文献   

6.
Two members of the green fluorescent protein family, the purple asFP595 and yellow zFP538 proteins, are perspective fluorescent markers for use in multicolor imaging and resonance energy-transfer applications. We report the results of quantum based calculations of the solution pKa values for selected protonation sites of the denatured asFP595 and zFP538 chromophores in the trans- and cis-conformations in order to add in the interpretation of photo-physical properties of these proteins. The pKa values were determined from the theromodynamic cycle based on B3LYP/6-311++G(2df, 2p) calculations of the gas phase free energies of the molecules and the B3LYP/6-311++G(d, p) calculations of solvation energies. The results show that the pKa’s of the protonation sites of the chromophore from asFP595 noticeably depend on the isomer conformation (cis- or trans-), while those of zFP538 are much less sensitive to isomerization.  相似文献   

7.
While green fluorescent proteins (GFPs) have been widely used as tools in biochemistry, cell biology, and molecular genetics, novel red fluorescent proteins (RFPs) with red fluorescence emission have also been identified, as complements to the existing GFP technology. The unusual spectrophotometric and fluorescence properties of GFPs and RFPs are controlled by the protonation states and possibly cis/trans isomerization within their chromophores. In this work, we have investigated the electronic structures, liquid structures, and solvent shifts of the possible neutral and anionic protonated states and the cis/trans isomerization of a RFP chromophore model compound HBMPI in aqueous solutions. The calculations reproduced the experimental absorption solvatochromatic shifts of dilute HBMPI in water under neutral and anionic conditions. Unlike the GFP chromophore, the RFP chromophore model compound HBMPI in basic solution can only adopt a conformation where the C=C bond between the bridge group and the imidazolinone ring and the C-C bond between the imidazolinone and ethylene groups exist in cis and trans conformations, respectively. Moreover, the solvent-solute hydrogen-bonding interactions are found to contribute significantly to the total solvent shifts of pi-pi* excitations of aqueous HBMPI solutions, signifying the importance of protein environment in the determination of the conformation of the chromophores in red fluorescent proteins.  相似文献   

8.
9.
We considered a series of model systems for treating the photoabsorption of the 11-cis retinal chromophore in the protonated Schiff-base form in vacuum, solutions, and the protein environment. A high computational level, including the quantum mechanical-molecular mechanical (QM/MM) approach for solution and protein was utilized in simulations. The S0-S1 excitation energies in quantum subsystems were evaluated by means of an augmented version of the multiconfigurational quasidegenerate perturbation theory (aug-MCQDPT2) with the ground-state geometry parameters optimized in the density functional theory PBE0/cc-pVDZ approximation. The computed positions of absorption bands lambdamax, 599(g), 448(s), and 515(p) nm for the gas phase, solution, and protein, respectively, are in excellent agreement with the corresponding experimental data, 610(g), 445(s), and 500(p) nm. Such consistency provides a support for the formulated qualitative conclusions on the role of the chromophore geometry, environmental electrostatic field, and the counterion in different media. An essentially nonplanar geometry conformation of the chromophore group in the region of the C14-C15 bond was obtained for the protein, in particular, owing to the presence of the neighboring charged amino acid residue Glu181. Nonplanarity of the C14-C15 bond region along with the influence of the negatively charged counterions Glu181 and Glu113 are found to be important to reproduce the spectroscopic features of retinal chromophore inside the Rh cavity. Furthermore, the protein field is responsible for the largest bond-order decrease at the C11-C12 double bond upon excitation, which may be the reason for the 11-cis photoisomerization specificity.  相似文献   

10.
Two ground-state protonation forms causing different absorption peaks of the green fluorescent protein chromophore were investigated by the quantum mechanical SAC/SAC-CI method with regard to the excitation energy, fluorescence energy, and ground-state stability. The environmental effect was taken into account by a continuum spherical cavity model. The first excited state, HOMO-LUMO excitation, has the largest transition moment and thus is thought to be the source of the absorption. The neutral and anionic forms were assigned to the protonation states for the experimental A- and B-forms, respectively. The present results support the previous experimental observations.  相似文献   

11.
Understanding the chromophore maturation process in fluorescent proteins is important for the design of proteins with improved properties. Here, we present the results of electronic structure calculations identifying the nature of a blue intermediate, a key species in the process of the red chromophore formation in DsRed, TagRFP, fluorescent timers, and PAmCherry. The chromophore of the blue intermediate has a structure in which the π-system of the imidazole ring is extended by the acylimine bond, which can be represented by the model N-[(5-hydroxy-1H-imidazole-2yl)methylidene]acetamide (HIMA) compound. Ab initio and QM/MM calculations of the isolated model and protein-bound (mTagBFP) chromophores identify the anionic form of HIMA as the only structure that has absorption that is consistent with the experiment and is stable in the protein binding pocket. The anion and zwitterion are the only protonation forms of HIMA whose absorption (421 and 414 nm, or 2.95 and 3.00 eV) matches the experimental spectrum of the blue form in DsRed (the absorption maximum is 408 nm or 3.04 eV) and mTagBFP (400 nm or 3.10 eV). The QM/MM optimization of the protein-bound anionic form results in a structure that is close to the X-ray one, whereas the zwitterionic chromophore is unstable in the protein binding pocket and undergoes prompt proton transfer. The computed excitation energy of the protein-bound anionic form of the mTagBFP-like chromophore (3.04 eV) agrees with the experimental absorption spectrum of the protein. The DsRed-like chromophore formation in red fluorescent proteins is revisited on the basis of ab initio results and verified by directed mutagenesis revealing a key role of the amino acid residue 70, which is the second after the chromophore tripeptide, in the formation process.  相似文献   

12.
The photophysics of indigo as well as of bispyrroleindigo, the basic chromophore of indigo, has been investigated with ab initio electronic-structure calculations. Vertical electronic excitation energies and excited-state potential-energy profiles have been calculated with the CASSCF, CASPT2 and CC2 methods. The calculations reveal that indigo and bispyrroleindigo undergo intramolecular single-proton transfer between adjacent N-H and C=O groups in the (1)ππ* excited state. The nearly barrierless proton transfer provides the pathway for a very efficient deactivation of the (1)ππ* state via a conical intersection with the ground state. While a low-lying S(1)-S(0) conical intersection exists also after double-proton transfer, the latter reaction path exhibits a much higher barrier. The reaction path for trans→cis photoisomerization via the twisting of the central C=C bond has been investigated for bispyrroleindigo. It has been found that the twisting of the central C=C bond is unlikely to play a role in the photochemistry of indigo, because of a large potential-energy barrier and a rather high energy of the S(1)-S(0) conical intersection of the twisted structure. These findings indicate that the exceptional photostability of indigo is the result of rapid internal conversion via intramolecular single-proton transfer, combined with the absence of a low-barrier reaction path for the generation of the cis isomer via trans→cis photoisomerization.  相似文献   

13.
Vibrational activities in the Raman and resonance Raman spectra of the cationic, neutral, and anionic forms of 4'-hydroxybenzylidene-2,3-dimethyl-imidazolinone, a model compound for the green fluorescent protein chromophore, have been obtained from quantum-chemical calculations in vacuo and with the inclusion of solvent effects through the polarizable continuum model. It is found that inclusion of solvent effects improves slightly the agreement with experimental data for the cationic and neutral forms, whose spectra are qualitatively well-described already by calculations in vacuo. In contrast, inclusion of solvent effects is crucial to reproduce correctly the activities of the anionic form. The structural effects of solvation are remarkable both in the ground and in the lowest excited state of the anionic chromophore and influence not only the vibrational activity but also the photodynamics of the lowest excited state. CASPT2//CASSCF photoreaction paths, computed by including solvent effects at the CASSCF level, indicate a facile torsional deformation around both exocyclic CC bonds. Rotation around the exocyclic CC double bond is shown to lead to a favored radiationless decay channel, more efficient than that in gas phase, and which explains the ultrafast fluorescence decay and ground-state recovery observed in solution. Conversely, rotation around the exocyclic CC single bond accounts for the bottleneck observed in the ground-state recovery cycle. It is also speculated that the ultrafast radiationless decay channel would be hampered in protein for unfavorable electrostatic interactions and steric reasons.  相似文献   

14.
Green fluorescent proteins (GFPs) have become powerful markers for numerous biological studies due to their robust fluorescence properties, site-specific labeling, pH sensitivity, and mutations for multiple-site labeling. Fluorescence correlation spectroscopy (FCS) studies have indicated that fluorescence blinking of anionic GFP mutants takes place on a time scale of 45-300 ms, depending on pH, and have been attributed to external proton transfer. Here we present experimental evidence indicating that conformational change in the protein &beta-barrel is a determining step for the external protonation of GFP-S65T (at low pH) using time-resolved fluorescence and polarization anisotropy measurements. While the average anionic fluorescence lifetime of GFP-S65T is reduced by approximately 18% over a pH range of 3.6-10.0, the fluorescence polarization anisotropy decays mostly as a single exponential with a rotational time of phi = 17 +/- 1 ns, which indicates an intact beta-barrel with a hydrodynamic volume of 78 +/- 5 nm3. In contrast, the total fluorescence (525 +/- 50 nm) of the excited neutral state of S65T reveals a strong correlation between the fluorescence lifetime, structural conformation, and pH. The average fluorescence lifetime of the excited neutral state of S65T as a function of pH yields pKa approximately 5.9 in agreement with literature values using steady-state techniques. In contrast to the intact beta-barrel at high pH, the anisotropy of neutral S65T (at pH 相似文献   

15.
The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic forms, as well as of aqua‐p‐Cresol (i.e., the moiety that constitutes the side chain portion of Tyrosine). To achieve a better accuracy in the MD sampling, the Tyrosine Force Field (FF) parameters were derived de novo via quantum mechanical calculations. The UV–vis absorption spectra are computed considering the occurring electronic transitions in the vertical approximation for each of the chromophore configurations sampled by the classical MD simulations, thus including the effects of the chromophore semiclassical structural fluctuations. Finally, the explicit treatment of the perturbing effect of the embedding environment permits to fully model the inhomogeneous bandwidth of the electronic spectra. Comparison between our theoretical–computational results and experimental data shows that the used model captures the essential features of the spectroscopic process, thus allowing to perform further analysis on the strict relationship between the quantum properties of the chromophore and the different embedding environments. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
In this work we present the results of a combined experimental and theoretical study concerned with the question how a proton changes the electronic spectrum and dynamics of adenine. In the experimental part, isolated adenine ions have been formed by electro-spray ionisation, stored, mass-selected and cooled in a Paul trap and dissociated by resonant photoexcitation with ns UV laser pulses. The S(0)-S1 spectrum of protonated adenine recorded by fragment ion detection lies in a similar energy range as the first pipi* transition of neutral 9H-adenine. It shows a flat onset with a broad substructure, indicating a large S(0)-S1 geometry shift and an ultra-short lifetime. In the theoretical part, relative energies of the ground and the excited states of the most important tautomers have been calculated by means of a combined density functional theory and multi-reference configuration interaction approach. Protonation at the nitrogen in position 1 of the neutral 9H-adenine tautomer yields the most stable protonated adenine species, 1H-9H-A+. The 3H-7H-A+ and the 3H-9H-A+ tautomers, formed by protonation of 7H- and 9H-adenine in 3-position, are higher in energy by 162 cm(-1) and 688 cm(-1), respectively. Other tautomers lie at considerably higher energies. Calculated vertical absorption spectra are reported for all investigated tautomers whereas geometry optimisations of excited states have been carried out only for the most interesting ones. The S1 state energies and geometries are found to depend on the protonation site. The theoretical data match best with the experimental onset of the spectrum for the 1H-9H-A+ tautomer although we cannot definitely exclude contributions to the experimental spectrum from the 3H-7H-A+ tautomer at higher energies. The vertical S(0)--> S1 excitation energy is similar to the one in neutral 9H-adenine. As for the neutral adenine, we find a conical intersection of the S1 of protonated adenine with the ground state in an out-of-plane coordinate but at lower energies and accessible without barrier.  相似文献   

17.
18.
We have studied the structural changes induced by optical excitation of the chromophore in wild-type photoactive yellow protein (PYP) in liquid solution with a combined approach of polarization-sensitive ultrafast infrared spectroscopy and density functional theory calculations. We identify the nuC8-C9 marker modes for solution phase PYP in the P and I0 states, from which we derive that the first intermediate state I0 that appears with a 3 ps time constant can be characterized to have a cis geometry. This is the first unequivocal demonstration that the formation of I0 correlates with the conversion from the trans to the cis state. For the P and I0 states we compare the experimentally measured vibrational band patterns and anisotropies with calculations and find that for both trans and cis configurations the planarity of the chromophore has a strong influence. The C7=C8-(C9=O)-S moiety of the chromophore in the dark P state has a trans geometry with the C=O group slightly tilted out-of-plane, in accordance with the earlier reported structure obtained in an X-ray diffraction study of PYP crystals. In the case of I0, experiment and theory are only in agreement when the C7=C8-(C9=O)-S moiety has a planar configuration. We find that the carboxylic side group of Glu46 that is hydrogen-bonded to the chromophore phenolate oxygen does not alter its orientation on going from the electronic ground P state, via the electronic excited P state to the intermediate I0 state, providing conclusive experimental evidence that the primary stages of PYP photoisomerization involve flipping of the enone thioester linkage without significant relocation of the phenolate moiety.  相似文献   

19.
采用多组态CASSCF方法和MS-CASPT2方法研究了丁烯二腈中性分子及阳离子和阴离子的顺-反异构化机理.结果表明,中性分子和离子态的光顺-反异构化反应经历不同的非绝热跃迁途径:中性丁烯二腈受光激发至S1态后,需克服一个不低于19.7 k J/mol的能垒才有机会到达基态和激发态间的圆锥交叉(S_1/S_0-CI),随后经非辐射跃迁回到基态,S_1/S_0-CI在结构上偏离C=C双键旋转路径,且能量较高,因此会降低旋转速度,阻碍旋转的单向性;丁烯二腈阳离子和阴离子自由基的D_0态和D_1态旋转势能面在90°处相交,优化的D_1/D_0-CI与D_1态中间体的结构和能量均相近,因此从D1态经由D_1/D_0-C_I无辐射跃迁到D_0态的过程无势垒,在此过程中C=C旋转方向性得到最大限度的保持.研究结果证实了电子诱导不仅能降低基态热旋转势垒,而且能够调控光旋转的非绝热跃迁机理.  相似文献   

20.
Photoactivatable fluorescent proteins are essential players in nanoscopy approaches based on the super-localization of single molecules. The subclass of reversibly photoswitchable fluorescent proteins typically activate through isomerization of the chromophore coupled with a change in its protonation state. However, the interplay between these two events, the details of photoswitching pathways, and the role of protein dynamics remain incompletely understood. Here, by using a combination of structural and spectroscopic approaches, we discovered two fluorescent intermediate states along the on-switching pathway of the fluorescent protein Padron. The first intermediate can be populated at temperatures as low as 100 K and results from a remarkable trans-cis isomerization of the anionic chromophore taking place within a protein matrix essentially deprived of conformational flexibility. This intermediate evolves in the dark at cryotemperatures to a second structurally similar but spectroscopically distinct anionic intermediate. The final fluorescent state, which consists of a mixture of anionic and neutral chromophores in the cis configuration, is only reached above the glass transition temperature, suggesting that chromophore protonation involves solvent interactions mediated by pronounced dynamical breathing of the protein scaffold. The possibility of efficiently and reversibly photoactivating Padron at cryotemperatures will facilitate the development of advanced super-resolution imaging modalities such as cryonanoscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号