首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled living radical polymerization, and after solvent annealing, thin films showing defect-free cylindrical microdomains were obtained. The key to the successful generation of highly regular, porous thin films is the use of PMMA as a photodegradable mid-block which leads to nanoporous structures with an unprecedented degree of lateral order. The power of using a triblock copolymer when compared to a traditional diblock copolymer is evidenced by the ability to exploit and combine the advantages of two separate diblock copolymer systems, the high degree of lateral ordering inherent in PS-b-PEO diblocks plus the facile degradability of PS-b-PMMA diblock copolymer systems, while negating the corresponding disadvantages, poor degradability in PS-b-PEO systems and no long-range order for PS-b-PMMA diblocks.  相似文献   

2.
The synthesis of ABA triblock copolymers of the type PDMAEMA-PCL-PDMAEMA was achieved by atom transfer radical polymerization (ATRP) of DMAEMA using difunctional polycaprolactone (PCL) as macroinitiator. First, ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was carried out in the presence of 1,2-diaminoethane/tin (II) octanoate. Dihydroxy PCL thus obtained was end-functionalized in a quantitative manner using 2-bromoisobutyryl bromide. The resulting Br-PCL-Br was used as macroinitiator in the ATRP of DMAEMA leading to triblock copolymers with PCL as the central block and PDMAEMA sequences of different lengths. NMR and SEC analyses confirmed the formation of ABA triblocks.  相似文献   

3.
Poly(isoprene-block-methyl methacrylate) (PI-b-PMMA) block copolymers with different block ratios have been used to generate nanostructures both in thin films and by nanostructuring a thermosetting epoxy system. Obtained morphologies have been analyzed in terms of atomic force microscopy. The nanostructuring of thin films was carried out by thermal and solvent vapor annealing, in which the copolymer films were exposed to acetone vapors, selective solvent for methyl methacrylate (PMMA) block. By solvent vapor annealing thin films of both copolymers self-assembled into a hexagonally packed cylindrical morphology. Thermal annealing was carried out above the glass transition temperature of both blocks, obtaining worm-like and lamellar morphologies, depending on the block ratio. One of the copolymers has also been used for nanostructuring an epoxy thermosetting system. Morphologies consisting of spherical-shaped PI domains dispersed in a continuous epoxy matrix in which PMMA remained miscible were obtained, independently of the copolymer amount.  相似文献   

4.
We have prepared an aqueous physical gel consisting of negatively charged silica nanoparticles bridged by ABA triblock copolymers, in which the A blocks are positively charged and the B block is neutral and water-soluble. Irreversible aggregation of the silica nanoparticles was prevented by precoating them with a neutral hydrophilic polymer. Both the elastic plateau modulus and the relaxation time increase slowly as the gel ages, indicating an increase both in the number of active bridges and in the strength with which the end blocks are adsorbed. The rate of this aging process can be increased significantly by applying a small shear stress to the sample. Our results indicate that charge-driven bridging of nanoparticles by triblock copolymers is a promising strategy for thickening of aqueous particle containing materials, such as water-based coatings.  相似文献   

5.
A series of conjugated triblock copolymers containing hole-transporting polycarbazole segments, electron-transporting polyoxadiazole segments, and blue-light-emitting polyfluorene segments were prepared with a two-step palladium-catalyzed Suzuki polycondensation (SPC). First dibromo-terminated polymer precursors (polyfluorenes and polyoxadiazoles) were synthesized as the central buildingblocks. Then, the dibromo-terminated polymer precursors were further polymerized with AB-type monomers [2-bromo-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole, 3-bromo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole, and 2-bromo-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-dioctylfluorene] to achieve the target triblock copolymers under SPC conditions. The formation of the triblock copolymers was confirmed by gel permeation chromatography and NMR spectroscopy. The triblock copolymers exhibited good thermal stability. An investigation of the photophysical properties indicated that efficient, photoinduced through-bond energy transfer occurred in such triblock copolymer systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2410–2424, 2007  相似文献   

6.
A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.  相似文献   

7.
Block copolymers consisting of a pentafluorostyrene (PFS) block and a hydrophilic block were synthesized by RAFT polymerisation. The hydrophilic blocks consist of methacrylate derivatives, 4-hydroxystyrene or 4-vinylpyridine monomers. The block copolymers were obtained with narrow molecular weight distributions and the molecular weights were in good agreement with the theoretical values. In addition, a model thiol was reacted with the PFS moieties of the block copolymers. This polymer–analogous reaction was performed under ambient conditions in high yields resulting quantitatively in para-substitution of the pentafluorophenyl rings. Finally, thin films consisting of block copolymers that showed strong phase-segregation behaviour and ordered nanostructured surfaces consisting of both blocks were obtained.  相似文献   

8.
Symmetric photosensitive fully liquid-crystalline triblock copolymers are synthesized by pseudo-living reversible addition-fragmentation chain-transfer radical polymerization for the first time. The polymerization of 3-[methyl(phenyl)amino]propyl acrylate mediated by three different symmetric trithiocarbonates with various leaving groups is studied. It is shown that reversible addition-fragmentation chain-transfer agents make it possible to synthesize narrowly dispersed homopolymers with controlled molecular masses. Poly[(3-[methyl(phenyl)amino]propyl acrylate) trithiocarbonates] are used as polymeric reversible addition-fragmentation chain-transfer agents in the block copolymerization of the phenyl benzoate acrylic monomer. The chemical modification of block copolymers yields desirable photosensitive triblock copolymers containing azobenzene groups. The effect of the molecular structure of triblock copolymers on their phase behavior and thermal properties is examined.  相似文献   

9.
Boron doped NiO films were prepared by sol–gel method. The effects of B content on the morphological and optical properties of NiO films were studied with atomic force microscopy, and optical characterization method. The average transmittance at the visible region is reached to 75 % for lower doped films (0.1 and 0.2 % B), whereas, the recorded average value of transmittance was about 62 % for doped film with 1 % B throughout the region. The optical energy gap value for pure NiO film was found to be 3.73 eV. These values were affected by B doping with non-monotonic variation and reached to 3.64 eV for 0.1 % B doped NiO. Also, the refractive index dispersion and dielectric constants of the NiO films were studied throughout the investigated range of wavelengths. The obtained results indicate that the optical parameters of the NiO film are controlled with boron doping.  相似文献   

10.
The time evolution of the free surface of asymmetric diblock copolymers of polystyrene and poly(methyl methacrylate) on a strongly interacting surface was studied with atomic force microscopy. The surface morphology underwent morphological transitions to satisfy commensurability conditions. These transformations were consistent with recent self‐consistent field arguments predicting the phase transitions of copolymers as a function of thickness (see M. J. Fasolka, P. Banerjee, A. M. Mayes, G. Pickett, & A. C. Balazs, Macromolecules 2000, 33, 5702). © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 663–668, 2001  相似文献   

11.
This article demonstrates the successful fabrication of thin‐film‐composite (TFC) membranes containing well‐defined soft‐hard‐soft triblock copolymers. Based on “hard” polyimide (PI) and “soft” polydimethylsiloxane (PDMS), these triblock copolymers (PDMS‐b‐PI‐b‐PDMS), were prepared via condensation polymerization, and end‐group allylic functionalization to prepare the polyimide component and subsequent “click” coupling with the soft azido functionalized PDMS component. The selective layer consisted of pure PDMS‐b‐PI‐b‐PDMS copolymers which were cast onto a precast crosslinked‐PDMS gutter layer which in turn was cast onto a porous polyacrylonitrile coated substrate. The TFC membranes' gas transport properties, primarily for the separation of carbon dioxide (CO2) from nitrogen (N2), were determined at 35 °C and at a feed pressure of 2 atm. The TFC membranes showed improvements in gas permselectivity with increasing PDMS weight fraction. These results demonstrate the ability for glassy, hard polymer components to be coated onto otherwise incompatible surfaces of highly permeable soft TFC substrates through covalent coupling. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3372–3382  相似文献   

12.
A novel amphiphilic copolymer poly(ethylene glycol)-block-poly(N,N-dimethylamino-2-ethylmethacrylate)-blockpoly[6-(4-methoxy-azobenzene-4’-oxy) hexyl methacrylate](PEG-b-PDMAEMA-b-PMMAzo) was prepared by ATRP polymerization.The self-assembly and responsive behaviors were investigated by SEM,TEM,LLS and UV-Vis spectra.The results indicated that the copolymers can self-assemble into spherical structures in aqueous media.The aggregate size can be tuned by pH and temperature.The trans-cis isomerization behavior of the formed aggregates was also examined.Upon irradiation with a linear polarized light,the elongation degree of the aggregates was increased with the irradiation time.  相似文献   

13.
We study a coarse-grained model of A(10)-B(20)-A(10) amphiphilic triblock copolymers in aqueous solution under confinement. We focus on the influence of the wall interaction on the morphology of the ensuing self-assembled structures. We also study the dynamics of the polymers. All our simulations are confined between two walls. We study three different combinations of walls: hydrophobic and hydrophobic, hydrophobic and hydrophilic, hydrophilic and hydrophilic. We moreover elucidate the concentration influence. The conformation and behavior of the copolymer in strongly confined systems depend on the type of wall interaction and concentration.  相似文献   

14.
We systematically study the cylinder-forming ABC triblock terpolymer thin films using canonical ensemble Monte Carlo simulations. The simulated annealing procedure is applied to the self-assembling process. By judicious choice of the system dimensions, we elaborately investigate the effect of film thickness on the orientation of the cylinders. This confined triblock terpolymer system exhibits different phase behavior under the weak and strong surface fields. In addition, we also investigate the ensemble-averaged chain orientations and relative density profiles.  相似文献   

15.
16.
Multicompartment micelles are desirable for advanced applications such as drug delivery. Recently, core-shell-corona (CSC) and segmented-worm (SW) micelles formed by ABC triblock terpolymers with three mutually immiscible blocks are observed in experiments. We have performed dissipative particle dynamics simulations to study the effects of molecular architecture, block length, and solution concentration on the morphologies of ABC triblock terpolymers. The formation of CSC and SW micelles for linear and miktoarm star ABC terpolymers is confirmed in this work. In addition, we predict that different multicompartment micellar morphologies (e.g., incomplete skin-layered micelles and segmented worms) can be formed by linear copolymer with different arrangements of the three blocks.  相似文献   

17.
Well-defined ABC block copolymers consisting of poly(ethylene oxide) monomethylene ether (MPEO) as A block, poly(styrene) (PS) as B block and poly(γ-benzyl-l-glutamate) (PBLG) as C block were synthesized by the combination of atom transfer radical polymerization (ATRP) and click reactions. The bromine-terminated diblock copolymer poly(ethylene oxide) monomethylene ether-block-poly(styrene) (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macro-initiator MPEO-Br, which was prepared from the esterification of MPEO and 2-bromoisobutyryl bromide, and converted into the azido-terminated diblock copolymer MPEO-PS-N3 by simple nucleophilic substitutions in DMF in the presence of sodium azide. Propargyl-terminated PBLGs were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in DMF at room temperature using propargyl amine as an initiator. ABC triblock copolymers MPEO-PS-PBLG with a wide range of number-average molecular weights from 1.55 to 3.75 × 104 and a narrow polydispersity from 1.07 to 1.10 were synthesized via the click reaction of MPEO-PS-N3 and the propargyl-terminated PBLG in the presence of CuBr and 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. The structures of these ABC block copolymers and corresponding precursors were characterized by NMR, IR and GPC. The results showed that click reaction was efficient. Therefore, a facile approach was offered to synthesize ABC triblock copolymers composed of crystallizable polymer MPEO, conventional vinylic polymer PS and rod-like α-helix polypeptide PBLG.  相似文献   

18.
We discuss the aggregation behavior of flexible-rigidflexible triblock copolymers in a selective solvent of low molecular weight. Aggregation may lead either to plates of (R) covered by brushes of (F), or to large “needles” (as a consequence of the Skoulios effect). In the absence of anisotropic bonding between adjacent rods, the “fence” morphology is not expected.  相似文献   

19.
Various SBT triblock copolymers with S being polystyrene, B being polybutadiene, and T being poly(tert-butyl methacrylate) and their saponified analogues, SBA with A being poly(methacrylic acid) are characterized in terms of their morphology. The chemical modification of the third block leads to a change of the overall morphology observed in solution cast films, which is interpreted as a consequence of the change of the incompatibility between the different components and the solvent.  相似文献   

20.
The nanostructure Ni-doped CdO films have been prepared by sol gel spin coating method. Atomic force microscopy results indicate that the CdO films are formed from the nanoparticles and the grain size is changed with nickel content. X-ray diffraction patterns of the films indicate that the undoped and Ni-doped CdO films have polycrystalline structure with a cubic sodium chloride structure, showing two main characteristic peaks assigned to the (111) and (200) planes. The optical band gap values of undoped and Ni-doped CdO films were determined by optical absorption method. The Eg values of the CdO films were found to be in the range of 2.26–2.60 eV. The Eg values of the CdO films increase with the content of Ni dopant (up to 6% Ni). It is evaluated that the optical band gap and grain size of the CdO film can be controlled by doping with nickel atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号