首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Janus gold nanostar–mesoporous silica nanoparticle ( AuNSt–MSNP ) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule ( 5 ), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers ( N 1 ). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.  相似文献   

2.
We have investigated a novel technique for the preparation of nano-sized Pt metals on Ti-containing mesoporous silica (TMS) thin film by photo-assisted deposition (PAD). The transparent TMS thin film was prepared on a quartz plate through sol—gel/spin coating. XRD, UV-Vis and Ti K-edge XAFS measurements revealed the formation of isolated Ti oxide species with a tetrahedral-coordination geometry in the silica framework. Deposition of Pt metal precursor on TMS thin film under UV-light irradiation, followed by reduction with molecular hydrogen, afforded a transparent thin film (Pt/TMS). The formation of highly dispersed nano-sized Pt metals having narrow size distributions was determined by Pd LIII-edge XANES and TEM analysis. The TMS and Pt/TMS thin films have been demonstrated to exhibit a strong hydrophilic property, even before UV irradiation, compared to the common mesoporous silica and TiO2 thin films. After UV-light irradiation, the contact angle of water droplet on the TMS and Pt/TMS thin films became extremely lower, indicating the appearance of the photo-induced super-hydrophilic property.  相似文献   

3.
Well-ordered nanopore arrays were successfully prepared from polystyrene (PS) and poly(methyl methacrylate) (PMMA) diblock copolymer (DBC) film based on a photochemical approach using 172-nm vacuum ultraviolet (VUV) light. Since the etching selectivity between the PS and PMMA domains against activated oxygen species generated by the VUV irradiation of atmospheric oxygen molecules was markedly different, PMMA was preferentially decomposed, resulting in the formation of PS nanopore arrays. Both the photoetching rate and final morphology depended greatly on the atmospheric pressure during VUV irradiation. Since at 10 Pa the PS domains degraded less due to the shortage of oxygen molecules in the atmosphere, the residual matrix kept its fine nanostructures up to 40 min of irradiation. The matrix could be eliminated completely when irradiation was extended to 60 min at this pressure. On the other hand, at 10(3) Pa the DBC film was removed completely from the substrate within 10 min of irradiation. However, at 10(3) Pa, not only the decomposition of the PMMA domains, but also the photoetching rate of the PS domains accelerated significantly resulting in marked distortion of the generated nanostructures. By selecting an appropriate atmospheric pressure and time for VUV irradiation, we were able to control both nanoarray formation and elimination without the use of any physical and/or chemical treatment.  相似文献   

4.
Micropatterns of cells on a poly(vinyl chloride) (PVC) film surface were created by using ion irradiation. A PVC film was irradiated with H+ ions through a pattern mask in order to create patterns of the hydrophilic/hydrophobic regions on the PVC surface. The effect of ion irradiation on the surface properties of the PVC film was characterized by using Fourier transform‐infrared spectroscopy (FT‐IR), water contact angle measurement, and X‐ray photoelectron spectroscopy (XPS). The results revealed that the chemical environment of the PVC film surface was effectively changed by ion irradiation due to dehydrochlorination and oxidation. The in vitro cell culture on the patterned PVC film surface showed selective adhesion and proliferation of the cells on the ion‐irradiated regions. Well‐defined 50 µm patterns of the cells were obtained on the PVC film surface irradiated to 1 × 1015 ions/cm2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In the present work, the influence of porosity and boron on shear thickening behavior of hybrid mesoporous silica has been studied. Three different levels of boron modification were performed by varying the molar composition of boric acid viz., 1.5 mmol, 2.5 mmol, and 3.5 mmol in a co-condensation approach. The incorporation of boron in mesoporous silica network was confirmed by various techniques such as Fourier transform infra-red (FTIR), and 11B solid- state nuclear magnetic resonance (NMR) spectroscopy. The morphology and particle size were confirmed by using scanning and transmission electron microscopy. To evaluate the effect of boron and porosity on the shear thickening behavior, dispersions were prepared from mesoporous boron- modified silica (MSiB), control mesoporous silica (MSi), non-porous boron-modified silica (SiB), and control non-porous silica (Si) in polyethylene glycol. The shear thickening behavior was studied using steady shear rheology. The dispersion prepared from different loadings of synthesized MSiB containing 1.5 mmol boron showed more than 16 times increase in viscosity (657.7 Pa.s) compared to that of MSi (39.2 Pa.s) at a fairly low volume fraction (φ = 0.15) of silica. It is expected that the highly ordered mesoporous architecture of hybrid silica has improved the interaction between the particle and the dispersing medium through hydrogen bonding. The porous morphology of the hybrid mesoporous silica as well as the incorporation of boron in the silica network favors the formation of a frictional contact network, and a transition from continuous shear thickening (CST) to discontinuous shear thickening (DST) behavior was observed. Therefore, silica prepared via incorporation of boron as well as porosity can be material of interest in variety of applications, for example, soft body armors, sporting goods, and shear thickening electrolytes for high impact resistant batteries.  相似文献   

6.
仿生介孔硅是以有机物作为模板,可有效复刻模板的独特形貌,从而得到其相同或相似结构孔径的介孔硅。本文从仿生的观点出发,从蟹壳中提取得到几丁质膜,将其用作模板制备了仿生手性向列型介孔二氧化硅,并用其制备了液相色谱柱,进行了手性化合物拆分实验。结果表明,该色谱固定相对10个手性化合物有一定的手性分离效果。  相似文献   

7.
In this study, the influence of irradiation temperature on mechanical properties of three fluoropolymers and on grafting of styrene into the polymers by the pre-irradiation method was investigated. Electron paramagnetic resonance spectroscopy and infrared spectroscopy were used to characterize the irradiated polymers regarding trapped radical species and changes in the chemical structure, respectively. For poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) the irradiation temperature was found to be an important factor for tensile strength and elongation at break of the pre-irradiated film. No strong effect of irradiation temperature on the mechanical properties was noticed for poly(tetrafluoroethylene-co-ethylene) (ETFE); however the yield of grafting drops at high irradiation temperatures. Finally, mechanical properties of poly(tetrafluoroethylene) (PTFE) were found to be dramatically altered, even if the film was irradiated at elevated temperature.  相似文献   

8.
Mesoporous materials have been proposed for use in numerous biological environments such as substrates for cell culture and controlled release for drug delivery. Although mesoporous silica synthesis is facile, recent reports (Dunphy et al. Langmuir 2003, 19, 10403; Bass et al. Chem. Mater. 2007, 19, 4349) have demonstrated instability (dissolution) of pure mesoporous silica films under biologically relevant conditions. In this work, we demonstrate a simple processing handle (pressure) to control the dissolution of mesoporous silica films that are synthesized using preformed template films and supercritical CO 2. Spectroscopic ellipsometry is utilized to quantify changes in both the film thickness and porosity; these properties provide insight into the dissolution mechanism. The pore size increases as the films are exposed to phosphate-buffered saline (PBS) through preferential dissolution at the pore wall in comparison to the film surface; a mechanism reminiscent of bulk erosion of scaffolds for drug delivery. Thin mesoporous silica film lifetimes can be extended from several hours using traditional sol-gel approaches to days by using CO 2 processing for identical film thickness. Osteoblast attachment and viability on these films was found to correlate with their increased stability. This enhanced stability opens new possibilities for the utilization of mesoporous silica for biological applications, including drug delivery and tissue engineering.  相似文献   

9.
An electrochemical resistive-type sensor device, with a mesoporous silica thin film as sensitive membrane, has been developed and characterised. The silica film has been obtained via evaporation-induced self-assembly (EISA) using a tri-block copolymer (Pluronic F-127) as templating agent. It has been deposited by dip-coating on a silicon substrate with metallic interdigitated electrodes. Fast, reversible and reproducible electrical responses to relative humidity changes have been observed for the sensor device. The conduction mechanism has been related to chemical properties, structural order and surface morphology of the porosity in the silica film, confirming the dependence on the film preparation method and overall the importance of calcination temperature.  相似文献   

10.
Mesoporous titania-silica composite films with highly aligned cylindrical pores are prepared by the sol-gel method using a substrate with structural anisotropy. The strong alignment effect of a rubbing-treated polyimide film on a substrate provides a narrow alignment distribution in the plane of the film regardless of the fast condensation rate of titania precursors. The collapse of the mesostructure upon the surfactant removal is effectively suppressed by the reinforcement of the pore walls with silica by exposing the as-deposited film to a vapor of a silicon alkoxide. The existence of a silica layer on the titania pore wall is proved from the distributions of Ti and Si estimated by the elemental analysis in high resolution electron microscopy. The obtained mesoporous titania-silica composite film exhibits a remarkable birefringence reflecting the highly anisotropic mesoporous structure and the high refractive index of titania that forms the pore wall. The Δn value estimated from the optical retardation and the film thickness is larger than 0.06, which cannot be achieved with the conventional mesoporous silica films with uniaxially aligned mesoporous structure even though the alignment of the pores in the films is perfect. These inorganic films with mesoscopic structural anisotropy will find many applications in the field of optics as phase plates with high thermal/chemical/mechanical stabilities.  相似文献   

11.
Mesoporous silica membranes were prepared on porous alumina substrates by a vapor infiltration of tetraethoxysilane (TEOS) into a non-ionic poly(oxyethylene) (Brij56) surfactant film. Periodic mesostructured silica membranes were formed on both α- and γ-alumina substrates pre-treated with polystyrene. The polystyrene polymer plugged the pores of the alumina substrates and inhibited the deposition of silica in the alumina pores, resulting in the formation of a very thin silica membrane without a silica/alumina composite layer at the interface between mesoporous silica and the alumina substrates. The calcined mesoporous silica membrane showed very high nitrogen permeance (>10−6 mol m−2 s−1 Pa−1). The single gas permeation was governed by the Knudsen diffusion mechanism. The durability of the mesoporous silica membrane against moisture in air was improved by a silylation with trimethylethoxysiliane.  相似文献   

12.
Highly ordered mesoporous SiC materials were prepared by infiltrating viscous liquid preceramic polymer, allylhydridopolycarbosilane, into two types of surface modified nanoporous silica templates: mesoporous silica SBA-15 and mesocellular siliceous foam. The silica templates were subsequently etched off after pyrolysis at 1000 degrees C under nitrogen atmosphere with the resultant formation of ordered mesoporous structures. The mesoporous SiC materials, synthesized from both types of templates possessed high Brunauer-Emmett-Teller (BET) surface areas in the range of 250-260 m(2)/g with pore sizes of 3.4-3.6 nm. The ordered structures of mesoporous SiC were exact inverse replicas of their respective silica templates, as characterized by small angle X-ray diffraction (XRD), transmission electron microscope (TEM) images, and the adsorption-desorption isotherm of nitrogen.  相似文献   

13.
Photochemical Electron Transfer (ET) between an organic dye, the porphyrin derivative TMPyP, and an electron acceptor, methyl viologen MV2+, have been investigated at the interface of two different inorganic films, i.e., layered titania nano-sheets (TNS) and a monolayer film of spherical and mono-dispersed mesoporous silica (sMPS) particles (ca. 0.5 microm). TMPyP ions were intercalated within the sMPS nano-cavities to form (TMPyP-sMPS) while MV2+ ions were intercalated into the TNS interlayers to form (MV2+-TNS). The (TMPyP-sMPS) and (MV2+-TNS) films were then stacked on a silica substrate in this order to form a (MV2+-TNS)/(TMPyP-sMPS) film and, upon UV light irradiation, ET could be induced. However, when this film was stacked inversely, i.e., for the (TMPyP-sMPS)/(MV2+-TNS) films on a silica substrate, no photoinduced ET were observed. Interestingly, however, even for this photo-inactive inversely stacked film, ET could be generated by inserting a gold vapor-deposited layer between the (MV2+-TNS) and (TMPyP-sMPS) films. The conjugation conditions at the interface of the inversely stacked (TMPyP-sMPS)/(MV2+-TNS) hybrid film were, thus, confirmed to strongly affect the photoinduced electron transfers and their efficiencies.  相似文献   

14.
The study of the chemical modifications of model compounds of the diglycidyl ether of bisphenol A/triethylene tetramine (DGEBA/TETA) epoxy resins under electron irradiation is described. The reaction of butylamine and N,N′-diethylethylene diamine with DGEBA afforded model compounds of the DGEBA/TETA structure. Nanometric silica was used as filler for these model compounds. 1H and 13C NMR analyses allowed identification of the chemical structures before and after irradiation. C-O and C-N scissions were observed with the formation of phenolic and methyl-ketone ends and of primary and secondary amines. For the model compounds containing the 1,2-diaminoethylene structure, the scission of the C-N bond is followed by the formation of an enamine end. The mechanisms of the different bond scissions are proposed. The presence of the nanometric silica fillers allows the protection of some C-N bonds. The reaction of the chemical species formed by electron irradiation with the reactive functions at the silica surface is proposed to explain the chemical modifications observed on the irradiated filled model compounds.  相似文献   

15.
The isolated and tetrahedrally coordinated metal oxide (Ti, V, Cr, Mo and W-oxides) moieties can be included in the silica matrixes of silica-based microporous zeolite and mesoporous silica materials and named as “single-site photocatalysts”. Under UV-light irradiation these single-site photocatalysts form the charge transfer excited state, i.e., the excited electron–hole pair state which is located quite near to each other in different from the manner observed on semiconducting materials such as TiO2, and play a significant role in various photocatalytic reactions. These single-site photocatalysts not only can promote photocatalytic reactions but also can be utilized to synthesis of functional materials. The nano-sized metal catalyst and visible-light sensitive binary oxide photocatalyst can be synthesized on the excited single-site photocatalyst under UV-light irradiation. The transparent mesoporous silica thin film with single-site photocatalyst generates the super-hydrophilic surface. In this review, our recent applications of single-site photocatalysts to synthesis of the surface functional materials have been introduced.  相似文献   

16.
We demonstrate a novel strategy for the preparation of mesoporous silica-supported, highly dispersed, stable metal and bimetal nanoparticles with both size and site control. The supporting mesoporous silica, functionalized by polyaminoamine (PAMAM) dendrimers, is prepared by repeated Michael addition with methyl acrylates (MA) and amidation reaction with ethylenediamine (EDA), by using aminopropyl-functionalized mesoporous silica as the starting material. The encapsulation of metal nanoparticles within the dendrimer-propagated mesoporous silica is achieved by the chemical reduction of metal-salt-impregnated dendrimer-mesoporous silica by using aqueous hydrazine. The site control of the metal or bimetal nanoparticles is accomplished by the localization of inter- or intradendrimeric nanoparticles within the mesoporous silica tunnels. The size of the encapsulated nanoparticles is controlled by their confinement to the nanocavity of the dendrimer and the mesopore. For Cu and Pd, particles locate at the lining of mesoporous tunnels, and have diameters of less than 2.0 nm. For Pd/Pt, particles locate at the middle of mesoporous tunnels and have diameters in the range of 2.0-4.2 nm. The Pd and Pd/Pt nanoparticles are very stable in air, whereas the Cu nanoparticles are stable only in an inert atmosphere.  相似文献   

17.
A facile method was investigated for patterning microporous and mesoporous silica, polymer, and carbon films using a combination of lithography and solid-state chemistry. This process exploits the difference in chemical reactivity between the lithographically exposed and unexposed regions to control the reaction of a target precursor from the vapor phase. A block copolymer film loaded with a photoacid generator is utilized as a preformed template, and tetraethylorthosilicate (TEOS) and furfuryl alcohol (FA) are the silica and carbon precursors, respectively. Following UV exposure and reaction with vaporized precursors, thermal decomposition of the polymeric template yields a mesoporous film in the exposed regions. Dense line-space patterns down to 1.5 microm features were resolved with I-line lithography. Sharper features were formed using FA; this behavior is attributed to the requirement for water in the system during TEOS condensation. Moisture in the system appears to lead to enhanced diffusion of the photoacid and a small decrease in the feature resolution. This methodology provides a simple etch-free route to patterning mesoporous films using commercially available materials.  相似文献   

18.
Herein, we demonstrate that silica films with perpendicular macroporous channels and accessible ordered mesopores can be conveniently prepared. The hierarchical macroporous–mesoporous silica films are synthesized by using zinc oxide nanorod array as macroporous template and CTAB surfactant as mesoporous template. In basic surfactant-containing solution, ordered mesoporous silica shells homogeneously grow on the zinc oxide nanorod array. The growth of the mesostructures do not require any chemical modification for the zinc oxide nanorod, which opens a new way for preparing hierarchical silica films with perpendicular mesochannels. The prepared hierarchical macroporous–mesoporous silica films possess a uniform thickness of 2 mm, large perpendicular macropores with a length of 1.8 mm and a width of 80 nm, and accessible ordered mesopores. Separation experiment demonstrates that this macroporous–mesoporous film can effectively separate biomolecules with different sizes.  相似文献   

19.
Electrogenerated silica thin films exhibiting a regular hexagonal packing of vertically‐aligned mesopore channels are promising for preconcentration electroanalysis. This work demonstrates the critical role of film thickness on their sensing performance using paraquat as a model analyte, based on mesoporous silica films prepared by electrochemically assisted self‐assembly performed for various deposition times. Films prepared with too short synthesis times (<10 s) led to deposits covering partially the electrode surface and suffered from rather poor sensing performance. Then, uniformly deposited films were obtained (between 10 and 15 s), and sensitivity rose up by increasing deposition times, whereas some limitations started to occur with much thicker films (>15 s deposition times) as a result of less electrochemically accessible paraquat accumulated far away from the electrode surface and restricted mass transport through the whole film thickness. These limitations were also confirmed on the basis of multi‐layered mesoporous silica films, suggesting a behavior that might be typical for other types of film‐modified electrodes.  相似文献   

20.
Nanostructured Ge-doped mesoporous silica powder and thin film were prepared with a cetyltrimethylammonium bromide self-assembled template to investigate the doping effects on the structure and optical properties of mesoporous silica. The X-ray diffraction, transmission electron microscopy and photoluminescence (PL) results suggest that the Ge-doped mesoporous silica with Ge/Si molar ratio of 0.01 was characterized by the strongest PL intensity without phase separation. Worm-like Ge-doped porous silica with specific area up to 987 m2/g could be obtained in this study, in which some Si atoms were replaced by Ge atoms according to the X-ray photoelectron spectroscopy analyses. The PL intensity of mesoporous silica could be increased by germanium-induced oxygen-related defects, but for the samples with Ge/Si molar ratios larger than 0.01, the PL intensity decreased due to the phase separation of germanium oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号