首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-order accurate monotone compact difference scheme proposed earlier by the author for one-dimensional nonstationary hyperbolic equations is extended to multidimensional equations. The resulting scheme is fourth-order accurate in space on a compact stencil and third-order accurate in time. Additionally, the scheme is conservative, absolutely stable, and efficient and can be solved using the running calculation method in space. By computing initial-boundary value problems for the linear advection equation and the nonlinear Hopf equation on refined meshes, it is shown that the orders of grid convergence of the multidimensional scheme are close to the corresponding orders of accuracy in independent variables. For the propagation of a two-dimensional rectangular pulse and the Hopf equation with a discontinuous solution, the multidimensional scheme is shown to inherit the monotonicity of its one-dimensional counterpart.  相似文献   

2.
In this article, we introduce a high‐order accurate method for solving the two dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivatives of linear hyperbolic equation and collocation method for the time component. The resulted method is unconditionally stable and solves the two‐dimensional linear hyperbolic equation with high accuracy. In this technique, the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method give a very efficient approach for solving the two dimensional linear hyperbolic equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

4.
In this study, a high-order compact scheme for 2D Laplace and Poisson equations under a non-uniform grid setting is developed. Based on the optimal difference method, a nine-point compact difference scheme is generated. Difference coefficients at each grid point and source term are derived. This is accomplished through the consideration of compatibility between the partial differential equation and its difference discretization. Theoretically, the proposed scheme has third- to fourth-order accuracy; its fourth-order accuracy is achieved under uniform grid settings. Two examples are provided to examine performance of the proposed scheme. Compared with the traditional five-point difference scheme, the proposed scheme can produce more accurate results with faster convergence. Another reference scheme with the same nine-point grid stencil is derived based on the five-point scheme. The two nine-point schemes have the same coefficients for each grid points; however, their coefficients for the source term are different. The overall accuracy level of the solution resulting from the proposed scheme is higher than that of the nine-point reference scheme. It is also indicated that the smoothness of grids has significant effects on accuracy and convergence of the solutions; efforts in optimizing the grid configuration and allocation can improve solution accuracy and efficiency. Consequently, with the proposed method, solution under the non-uniform grid setting with appropriate grid allocation would be more accurate than that under the uniform-grid manipulation, with the same number of grid points.  相似文献   

5.
The method of lines is used to obtain semidiscrete equations for a bicompact scheme in operator form for the inhomogeneous linear transport equation in two and three dimensions. In each spatial direction, the scheme has a two-point stencil, on which the spatial derivatives are approximated to fourth-order accuracy due to expanding the list of unknown grid functions. This order of accuracy is preserved on an arbitrary nonuniform grid. The equations of the method of lines are integrated in time using diagonally implicit multistage Runge–Kutta methods of the third up fifth orders of accuracy. Test computations on refined meshes are presented. It is shown that the high-order accurate bicompact schemes can be efficiently parallelized on multicore and multiprocessor computers.  相似文献   

6.
High-order compact finite difference method for solving the two-dimensional fourth-order nonlinear hyperbolic equation is considered in this article. In order to design an implicit compact finite difference scheme, the fourth-order equation is written as a system of two second-order equations by introducing the second-order spatial derivative as a new variable. The second-order spatial derivatives are approximated by the compact finite difference operators to obtain a fourth-order convergence. As well as, the second-order time derivative is approximated by the central difference method. Then, existence and uniqueness of numerical solution is given. The stability and convergence of the compact finite difference scheme are proved by the energy method. Numerical results are provided to verify the accuracy and efficiency of this scheme.  相似文献   

7.
We propose a new high‐order finite difference discretization strategy, which is based on the Richardson extrapolation technique and an operator interpolation scheme, to solve convection diffusion equations. For a particular implementation, we solve a fine grid equation and a coarse grid equation by using a fourth‐order compact difference scheme. Then we combine the two approximate solutions and use the Richardson extrapolation to compute a sixth‐order accuracy coarse grid solution. A sixth‐order accuracy fine grid solution is obtained by interpolating the sixth‐order coarse grid solution using an operator interpolation scheme. Numerical results are presented to demonstrate the accuracy and efficacy of the proposed finite difference discretization strategy, compared to the sixth‐order combined compact difference (CCD) scheme, and the standard fourth‐order compact difference (FOC) scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 18–32, 2004.  相似文献   

8.
We consider the accuracy of two finite difference schemes proposed recently in [Roy S., Vasudeva Murthy A.S., Kudenatti R.B., A numerical method for the hyperbolic-heat conduction equation based on multiple scale technique, Appl. Numer. Math., 2009, 59(6), 1419–1430], and [Mickens R.E., Jordan P.M., A positivity-preserving nonstandard finite difference scheme for the damped wave equation, Numer. Methods Partial Differential Equations, 2004, 20(5), 639–649] to solve an initial-boundary value problem for hyperbolic heat transfer equation. New stability and approximation error estimates are proved and it is noted that some statements given in the above papers should be modified and improved. Finally, two robust finite difference schemes are proposed, that can be used for both, the hyperbolic and parabolic heat transfer equations. Results of numerical experiments are presented.  相似文献   

9.
Interior and boundary difference equations are derived for several hyperbolic partial differential equations by means of an integral method. The method is applied to a simple transport equation, to waves in a compressible, isentropic fluid, and to surface waves in shallow water. Boundary conditions treated are (a) a perfectly reflecting boundary, (b) an open boundary with outgoing waves and a specified incoming wave, and (c) a partially reflecting boundary. For open boundaries, the major assumption for the algorithms to be valid is that outgoing waves can be defined, an assumption equivalent to the most general statement of Sommerfeld's radiation condition. The difference equations obtained are conservative, second-order accurate, two time-level, explicit, and stable (for one-dimensional, time-dependent problems) for cΔtx ? 1 where c is the wave speed, Δt is the temporal grid size, and Δx is the spatial grid size. Numerical calculations demonstrate the excellent accuracy of the procedure.  相似文献   

10.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

11.
In the present paper the first and second orders of accuracy difference schemes for the numerical solution of multidimensional hyperbolic equations with nonlocal boundary and Dirichlet conditions are presented. The stability estimates for the solution of difference schemes are obtained. A method is used for solving these difference schemes in the case of one dimensional hyperbolic equation.  相似文献   

12.
In the present paper, the two‐step difference scheme for the Cauchy problem for the stochastic hyperbolic equation is presented. The convergence estimate for the solution of the difference scheme is established. In applications, the convergence estimates for the solution of difference schemes for the numerical solution of four problems for hyperbolic equations are obtained. The theoretical statements for the solution of this difference scheme are supported by the results of the numerical experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The first‐order of accuracy difference scheme for approximately solving the multipoint nonlocal boundary value problem for the differential equation in a Hilbert space H, with self‐adjoint positive definite operator A is presented. The stability estimates for the solution of this difference scheme are established. In applications, the stability estimates for the solution of difference schemes of the mixed type boundary value problems for hyperbolic–parabolic equations are obtained. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
In this article a sixth‐order approximation method (in both temporal and spatial variables) for solving nonhomogeneous heat equations is proposed. We first develop a sixth‐order finite difference approximation scheme for a two‐point boundary value problem, and then heat equation is approximated by a system of ODEs defined on spatial grid points. The ODE system is discretized to a Sylvester matrix equation via boundary value method. The obtained algebraic system is solved by a modified Bartels‐Stewart method. The proposed approach is unconditionally stable. Numerical results are provided to illustrate the accuracy and efficiency of our approximation method along with comparisons with those generated by the standard second‐order Crank‐Nicolson scheme as well as Sun‐Zhang's recent fourth‐order method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

15.
基于Richardson外推法提出了数值求解三维泊松方程的高阶紧致差分方法.方法通过利用四阶和六阶紧致差分格式,分别在细网格和粗网格上求解,然后利用Richardson外推技术和算子插值方法,得到三维泊松方程在细网格上的六阶和八阶精度的数值解.数值实验结果验证了该方法的精确性和有效性.  相似文献   

16.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

17.
In this paper, we have developed a fourth-order compact finite difference scheme for solving the convection-diffusion equation with Neumann boundary conditions. Firstly, we apply the compact finite difference scheme of fourth-order to discrete spatial derivatives at the interior points. Then, we present a new compact finite difference scheme for the boundary points, which is also fourth-order accurate. Finally, we use a Padé approximation method for the resulting linear system of ordinary differential equations. The presented scheme has fifth-order accuracy in the time direction and fourth-order accuracy in the space direction. It is shown through analysis that the scheme is unconditionally stable. Numerical results show that the compact finite difference scheme gives an efficient method for solving the convection-diffusion equations with Neumann boundary conditions.  相似文献   

18.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

19.
In this article, we apply compact finite difference approximations of orders two and four for discretizing spatial derivatives of wave equation and collocation method for the time component. The resulting method is unconditionally stable and solves the wave equation with high accuracy. The solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. We employ the multigrid method for solving the resulted linear system. Multigrid method is an iterative method which has grid independently convergence and solves the linear system of equations in small amount of computer time. Numerical results show that the compact finite difference approximation of fourth order, collocation and multigrid methods produce a very efficient method for solving the wave equation. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

20.
We present an unsplit second-order finite difference algorithm for hyperbolic conservation laws in several variables. Although the method can be directly implemented for general hyperbolic systems, we focus in this article on reducing grid orientation effects in porous media flow. In particular, we consider miscible and immiscible displacement processes. Our main concern is to develop a scheme that can easily be implemented into existing standard finite-difference-based reservoir simulators as an option to be used if grid orientation effects occur. The principle of the scheme is to build a higher order scheme to reduce numerical dispersion and that does not split the spatial operator to reduce the effect of the grid orientation. Numerical results are presented, which show that the method presented here reduces the effect of the numerical dispersion to a level that minimizes the grid orientation effects in a computationally efficient manner. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号