首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
生命起源、全球气候变化等是关系到人类未来命运的重大科学问题, X射线光谱(XRS)可原位测定物质组成与元素形态,在解决重大科学问题、揭示自然规律中发挥了重要作用:(1)在生命起源探索中,通过RNA结构和海洋热液自养体系元素形态分析,揭示了RNA形成机制和生物地球化学规律;(2)在地球早期生命研究中,通过沉积纹层、细胞组构测定,发现了远古生物保存机制与证据;(3)在全球碳循环研究中,通过物相与元素形态分析,揭示了铁源生物有效性与碳汇机制。利用XRS从微纳米尺度原位测定元素三维空间分布与形态,实现活体分析蛋白质信息传递与生物响应过程,探索元素与有机质构效关系,揭示生命起源与生物代谢机制及全球气候变化规律,是XRS未来发展中的重要领域;作为冶金、材料、地质、文物、工矿、生态、环境、医学与生命科学等领域中的重要分析手段, XRS所特有的无损、原位与活体分析特性,已呈现了巨大应用价值,在未来探索重大科学问题、解决关键技术难点的研究中, X射线光谱分析技术必将发挥更大作用。  相似文献   

2.
In 1985, we reported that a bacterium, Mycoplasma capricolum, used a deviant genetic code, namely UGA, a "universal" stop codon, was read as tryptophan. This finding, together with the deviant nuclear genetic codes in not a few organisms and a number of mitochondria, shows that the genetic code is not universal, and is in a state of evolution. To account for the changes in codon meanings, we proposed the codon capture theory stating that all the code changes are non-disruptive without accompanied changes of amino acid sequences of proteins. Supporting evidence for the theory is presented in this review. A possible evolutionary process from the ancient to the present-day genetic code is also discussed.  相似文献   

3.
In 2015, I wrote a book with the same title as this article. The book’s subtitle is: “What we know and what we do not know.” On the book’s dedication page, I wrote: “This book is dedicated to readers of popular science books who are baffled, perplexed, puzzled, astonished, confused, and discombobulated by reading about Information, Entropy, Life and the Universe.” In the first part of this article, I will present the definitions of two central concepts: the “Shannon measure of information” (SMI), in Information Theory, and “Entropy”, in Thermodynamics. Following these definitions, I will discuss the framework of their applicability. In the second part of the article, I will examine the question of whether living systems and the entire universe are, or are not within the framework of applicability of the concepts of SMI and Entropy. I will show that much of the confusion that exists in the literature arises because of people’s ignorance about the framework of applicability of these concepts.  相似文献   

4.
Abstract

Failure analysis and fatigue life prediction are important steps in the design procedure of industrial products to assure the safety and reliability of their components. A new methodology to predict the fatigue life of a rubber mount based on the continuum damage mechanics is proposed in this study. The hyperelastic constitutive model of the natural rubber material in the mount was fitted using the three parameter Mooney-Rivlin model. A damage variable was introduced and the evolution function of cumulative damage in the rubber material was derived. The parameters in the damage function were acquired based on uniaxial tensile tests and fatigue life tests of the natural rubber specimens. Then the finite element analysis (FEA) models of the rubber mount for loads in the X and Y directions were established and the strain contours and the maximum principal strains of the rubber mount under various loads were calculated. The maximum principal strain was used as the fatigue parameter, which was substituted into the natural rubber’s fatigue life damage function to predict the fatigue life of the rubber mount. Finally, the fatigue lives of the rubber mount under various loads were measured on a fatigue test rig to validate the accuracy of the fatigue life prediction method. The test results indicated that the fatigue lives predicted agreed fairly well with the test results and the fatigue prediction method should be applicable to both rubber and other types of components.  相似文献   

5.
Following a recent suggestion of axion cooling of photons between the nucleosynthesis and recombination epochs in the Early Universe, we investigate a hybrid model with both axions and relic supersymmetric particles. In this model we demonstrate that the 7Li abundance can be consistent with observations without destroying the important concordance of deuterium abundance.  相似文献   

6.
7.
在类氢离子电子束缚能一级相对论修正的基础上,计算了原子核的体积效应及质量效应对较轻元素及同位素类氢离子能级的修正量,结果显示,原子核的体积及质量效应不仅导致同位异核氢及类氢离子精细结构能级出现分裂,还会导致类氢离子精细结构能级的简并消失。  相似文献   

8.
Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.  相似文献   

9.
Integral relations were used to predict interface film transfer coefficients for evaporation and condensation. According to these, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The expressions were verified in earlier work using non-equilibrium molecular dynamics simulations for argon-like particles, which interacted with a short-range Lennard-Jones (LJ) spline potential, which becomes zero at about 1.7 times the LJ-diameter. In this paper we verify the validity of these relations for a long-range LJ spline potential which becomes zero at 2.5 times the diameter. In an earlier paper we have documented for this system that in particular the absolute heat of transfer becomes much larger than the value predicted by kinetic theory. This was not the case for the short-range potential. The findings are important for modelling of one-component phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号