首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Steady simple waves are investigated in an incompressible conducting ideal inhomogeneously and isotropically magnetizable fluid moving along the lines of force of a magnetic field. The integration of the system of equations describing such waves is reduced to the calculation of quadrature expressions in the case of an arbitrary magnetization law. It is shown that, depending on the magnetic properties of the medium, different types of steady waves are possible: magnetizing waves in a diamagnetic fluid and demagnetizing waves in a paramagnetic fluid. The results are given of calculations of demagnetizing waves in a conducting ferromagnetic fluid. An analysis is made of the various possible flow regimes of a conducting magnetizable fluid at the point of a perfectly conducting corner.  相似文献   

2.
The purpose of the present study is to investigate the problem of the propagation of weak shock waves in an inviscid, electrically conducting fluid under the influence of a magnetic field. The analysis assumes the following two cases: (1) a planar flow with a uniform transverse magnetic field and (2) cylindrically symmetric flow with a uniform axial or varying azimuthal magnetic field. A system of two coupled nonlinear transport equations, governing the strength of a shock wave and the first-order discontinuity induced behind it, are derived that admit a solution that agrees with the classical decay laws for a weak shock. An analytic expression for the determination of the shock formation distance is obtained. How the magnetic field strength, whether axial or azimuthal, influences the shock formation is also assessed.  相似文献   

3.
A study is made of the analog of Prandt1—Meyer flow in an incompressible electrically conducting ideal fluid that is magnetizable in accordance with an arbitrary isotropic law. It is shown that inhomogeneity of the magnetization in a conducting fluid makes possible the existence of stationary simple waves with varying magnetic permeability. For a paramagnetic fluid magnetized to saturation, the equations of these waves are integrated completely in the case of a magnetic field parallel to the velocity. Some regions of such flows of magnetizable fluids are discussed in the present paper for the example of the problem of flow around a perfectly conducting profile.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 136–143, September–October, 1980.I thank I.E. Tarapov for his interest in the work and valuable comments made in a discussion.  相似文献   

4.
Suppose that a constant and uniform field B0 exists within an ideal fluid medium, that is, a medium in which dissipative processes are absent. If this medium is a conducting one and its magnetization and polarization can be neglected, then finite perturbations of the transverse (perpendicular to B0) components of the velocity and the magnetic field propagate a-long b0 with a constant velocity without change of form [1], These plane transverse waves, called Alfven waves, are linear and cannot lead to discontinuities if there are no discontinuities in the initial conditions. In this paper we shall consider plane transverse waves in an ideal fluid medium which is not only electrically conducting, but which can also be magnetized by the magnetic field. In such a medium transverse waves are no longer linear and they can develop into jumps in the magnitudes of the field and the velocity. Like Alfven waves, these waves leave the density of the medium unchanged, so that they can also exist in an incompressible fluid. This circumstance is reflected in the nature of the discontinuity, which is analyzed in Section 5.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 116–124, November–December, 1973.The author thanks A. G. Kulikovskii and A. A. Barmin for their valuable remarks contributed during discussions of the work.  相似文献   

5.
Several papers [1–4] have considered the propagation of a plane laminar jet of incompressible conducting fluid in a uniform magnetic field for magnetic Reynolds numbers much less than unity. These papers have investigated the flow of a free jet in a transverse magnetic field for small values of the magnetic interaction parameter. Equations for the first approximations were obtained in [1, 2] by a series expansion in the small interaction parameter close to the ordinary solution (without magnetic field) for the jet. The equations for the zero-th and first approximations were integrated in [3]. The same author also found a similar solution for a turbulent jet, the turbulent transfer coefficient being chosen according to Prandtl's method. As regards the solution found in [4], it suffers from the defect that the constant of integration which connects the real velocity profiles with those found in the paper remains undetermined. The present paper gives an approximate solution of the same dynamic problem of the propagation of a free plane jet in a uniform field, no assumption being made as to the smallness of the interaction parameter. In order to do this the integral method of solution, common in ordinary hydrodynamics [5, 6] is employed. The solution of the problem is generalized to include the case of a finite value of the Hall parameter.  相似文献   

6.
Formulas are obtained for the forces and moments acting on a spherical body made of a paramagnetic material in an uniform applied magnetic field and a magnet in a spherical vessel filled with magnetic fluid. An approximate formula is found for the force acting on bodies in ellipsoidal and cylindrical vessels or in a plane channel with a magnetic fluid in an uniform magnetic field. An analogy between the forces acting on a magnet and a paramagnetic body is demonstrated. The possibility of levitation of magnets and paramagnetic bodies in a vessel with a magnetic fluid is investigated.  相似文献   

7.
In this study, the fundamental problem of the biomagnetic fluid flow in a lid driven cavity under the influence of a steady localized magnetic field is studied. The mathematical model used for the formulation of the problem is consistent with the principles of Ferrohydrodynamics (FHD) and Magnetohydrodynamics (MHD). The biomagnetic fluid is considered as a homogeneous Newtonian fluid and is treated as an electrically conducting magnetic fluid which also exhibits magnetization. A known biomagnetic fluid which exhibits such magnetic properties is blood. For the numerical solution of the problem, which is described by a coupled, non linear system of PDEs, with appropriate boundary conditions, the SIMPLE algorithm is used. The solution is obtained by the development of a numerical methodology using finite volumes on a staggered, properly stretched, grid. Results concerning the velocity indicate that the presence of the magnetic field influences considerably the flow field.  相似文献   

8.
In the present paper the unsteady Couette flow and heat transfer of a dusty conducting fluid between two parallel plates with temperature dependent viscosity and thermal conductivity are studied. A constant pressure gradient and an external uniform magnetic field are applied. The governing coupled momentum and energy equations are solved numerically using finite differences. The effect of the variable viscosity and thermal conductivity of the fluid and the uniform magnetic field on the velocity and temperature fields for both the fluid and dust particles is discussed.  相似文献   

9.
In the present paper the unsteady flow and heat transfer of a dusty conducting fluid between two parallel plates with temperature dependent viscosity and thermal conductivity are studied. A constant pressure gradient and an external uniform magnetic field is applied. The governing coupled momentum and energy equations are solved numerically using finite differences. The effect of the variable viscosity and thermal conductivity of the fluid and the uniform magnetic field on the velocity and temperature fields for both the fluid and dust particles is discussed.On leave from Department of Mathematics and Physics, Faculty of Engineering, El-Fayoum University, Egypt  相似文献   

10.
The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com- plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermoelastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.  相似文献   

11.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

12.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

13.
This paper deals with the problem of magneto-thermoelastic interactions in an unbounded, perfectly conducting half-space whose surface suffers a time harmonic thermal source in the context of micropolar generalized thermoelasticity with fractional heat transfer allowing the second sound effects. The medium is assumed to be unstrained and unstressed initially and has uniform temperature. The Laplace–Fourier double transform technique has been used to solve the resulting non-dimensional coupled field equations. Expressions for displacements, stresses and temperature in the physical domain are obtained using a numerical inversion technique. The effects of fractional parameter, magnetic field and micropolarity on the physical fields are noticed and depicted graphically. For a particular model, these fields are found to be significantly affected by the above mentioned parameters. Some particular cases of interest have been deduced from the present problem. Numerical results predict finite speed of propagation for thermoelastic waves.  相似文献   

14.
The conservation laws are used to obtain phenomenologically the complete system of equations of motion of a conductive paramagnetic fluid in a magnetic field. In addition to the usual MHD equations (with additional terms accounting for the magnetization of the medium), this system includes the equation for the rate of change of the magnetic moment.The hydrodynamic equations for a fluid with internal rotation have been obtained in [1] and extended in [2] to the case of the paramagnetic properties resulting from this rotation: here the fluid was considered nonconducting. The analysis of [2] is extended to the case of a fluid with nonzero electrical conductivity. This will be the same extension of MHD as the theory of [1, 2] is for conventional hydrodynamics.  相似文献   

15.
It is proposed to consider the propagation of surface waves along a tangential magnetohydrodynamic discontinuity in the particular case where the fluid velocities on both sides of the interface are equal to zero. In [1] it was shown that waves called surface Alfvén waves may be propagated along the surface separating a semi-infinite region without a field from a region with a uniform magnetic field. The linear theory of surface Alfvén waves in a compressible medium was considered in [2]. In [3] the damping of surface Alfvén waves as a result of viscosity and heat conduction was investigated. The propagation of low-amplitude nonlinear surface Alfvén waves in an incompressible fluid in the absence of dissipative processes is described by the integrodifferential equation obtained in [4]. By means of a numerical solution of this equation it was shown that a perturbation initially in the form of a sinusoidal wave will break. The breaking time was determined. In this paper the equation derived in [4] is extended to the case of a viscous fluid. It is shown that the equation obtained does not have steady-state solutions. The propagation of periodic disturbances is investigated numerically. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 94–104, November–December, 1986. The author wishes to thank L. S. Fedorov for assisting with the calculations.  相似文献   

16.
In this paper, an analysis is made on the unsteady flow of an incompressible electrically conducting viscous fluid bounded by an infinite porous flat plate. The plate executes harmonic oscillations at a frequency n in its own plane. A uniform magnetic field Ho is imposed perpendicular to the direction of the flow. It is found that the solution also exists for blowing at the plate. The temperature distribution is also obtained by taking viscous and Joule dissipation into account. The mean wall temperature θo(O) decreases with the increase in the Hall parameter m. It is found that no temperature distribution exists for the blowing at the plate.  相似文献   

17.
The propagation of harmonic waves in discussed for an ideally conducting continuous elastic cylindrical rod within an ideally conducting cylindrical rube. The annulus contains a steady homogeneous longitudinal magnetic field. The dispersion equation is derived. The case of bending vibrations is considered.  相似文献   

18.
Plane waves in a semi-infinite fluid saturated porous medium   总被引:5,自引:0,他引:5  
The field equations governing the propagation of waves in an incompressible liquid-saturated porous medium are investigated and a general solution is presented. It has been revealed that coupled longitudinal and transverse waves propagate in the porous medium. The propagation of transverse waves in the fluid phase is completely due to the interaction between the solid and fluid phases. The dispersion relationship and attenuation features are discussed. Unlike other investigations, all explicit forms of the arguments are derived. The reflection of the plane harmonic waves at the plane, traction-free boundary, which shows the influence of the dissipation on the velocity, and the attenuation coefficients of the reflected waves is studied. It is of interest that pore pressure is produced in the process of reflection, even in the case of the incidence of transverse waves.  相似文献   

19.
The underlying mechanisms of controlling the self-assembly of micro-size nonmagnetic particles (NPs) in magnetic fluids are essential for the manufacture, process and exploitation of nano-magnetic material. In this study, a multi-physical numerical model, which couples a distribution function correction-based immersed boundary lattice Boltzmann method (DFCIB-LBM) for fluid–structure interaction (FSI) and a self-correcting procedure of Poisson equation solver for magnetic field, is carried out to investigate such self-assembling behaviors and mechanisms. The interactions of two neighboring micro-size NPs placed in different distance and orientation, and the self-assembling behaviors of numerous micro-size NPs under uniform magnetic field are studied in details. The results demonstrate that the self-assembling behaviors are caused by the inverse magnetic effect, which can be adjusted by varying the concentration and size of NPs, permeability ratio, and the strength of external magnetic field. On the contrary, NPs in magnetic fluid affect their surrounding magnetic field and hinder the magnetization near the NP boundary region. These findings can provide a better understanding of the bottom-up fabrication of magnetic functional materials and devices.  相似文献   

20.
The influence of the magnetization of a soft magnetic sphere on the surrounding magnetic field is measured and characterized.The interaction force between two soft magnetic particles is directly measured using an ultra precision load sensor in uniform and non-uniform magnetic fields. The interaction force largely follows an inverse fourth power law as a function of separation distance between particle centers. At small distances,the effect of magnetization of one particle on the magnetization of its adjacent particle causes the attractive(repulsive) force to be larger(smaller) than that predicted by the inverse fourth power law.The theoretical prediction based on a modified dipole model,that takes into account the coupling effect of the magnetization among soft magnetic particles,gives excellent agreement with the measured force in a uniform magnetic field.The interaction force under a non-uniform applied magnetic field can be reasonably predicted using the dipole-dipole interaction model when the local magnetic field is used to determine the magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号