首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inexact spectral projected gradient methods on convex sets   总被引:9,自引:0,他引:9  
A new method is introduced for large-scale convex constrainedoptimization. The general model algorithm involves, at eachiteration, the approximate minimization of a convex quadraticon the feasible set of the original problem and global convergenceis obtained by means of nonmonotone line searches. A specificalgorithm, the Inexact Spectral Projected Gradient method (ISPG),is implemented using inexact projections computed by Dykstra'salternating projection method and generates interior iterates.The ISPG method is a generalization of the Spectral ProjectedGradient method (SPG), but can be used when projections aredifficult to compute. Numerical results for constrained least-squaresrectangular matrix problems are presented.  相似文献   

2.
In this paper, we show that an analogue of the classical conjugate gradient method converges linearly when applied to solving the problem of unconstrained minimization of a strictly convex quadratic spline. Since a strictly convex quadratic program with simple bound constraints can be reformulated as unconstrained minimization of a strictly convex quadratic spline, the conjugate gradient method is used to solve the unconstrained reformulation and find the solution of the original quadratic program. In particular, if the solution of the original quadratic program is nondegenerate, then the conjugate gradient method finds the solution in a finite number of iterations. This author's research is partially supported by the NASA/Langley Research Center under grant NCC-1-68 Supplement-15.  相似文献   

3.
We consider the minimization problem with strictly convex, possibly nondifferentiable, separable cost and linear constraints. The dual of this problem is an unconstrained minimization problem with differentiable cost which is well suited for solution by parallel methods based on Gauss-Seidel relaxation. We show that these methods yield the optimal primal solution and, under additional assumptions, an optimal dual solution. To do this it is necessary to extend the classical Gauss-Seidel convergence results because the dual cost may not be strictly convex, and may have unbounded level sets. Work supported by the National Science Foundation under grant NSF-ECS-3217668.  相似文献   

4.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

5.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

6.
A customized Douglas-Rachford splitting method (DRSM) was recently proposed to solve two-block separable convex optimization problems with linear constraints and simple abstract constraints. The algorithm has advantage over the well-known alternating direction method of multipliers (ADMM), the dual application of DRSM to the two-block convex minimization problem, in the sense that the subproblems can have larger opportunity of possessing closed-form solutions since they are unconstrained. In this paper, we further study along this way by considering the primal application of DRSM for the general case m≥3, i.e., we consider the multi-block separable convex minimization problem with linear constraints where the objective function is separable into m individual convex functions without coupled variables. The resulting method fully exploits the separable structure and enjoys decoupled subproblems which can be solved simultaneously. Both the exact and inexact versions of the new method are presented in a unified framework. Under mild conditions, we manage to prove the global convergence of the algorithm. Preliminary numerical experiments for extracting the background from corrupted surveillance video verify the encouraging efficiency of the new algorithm.  相似文献   

7.
We present active set methods to evaluate the exact analytic efficient solution set for multi-criteria convex quadratic programming problems (MCQP) subject to linear constraints. The idea is based on the observations that a strictly convex programming problem admits a unique solution, and that the efficient solution set for a multi-criteria strictly convex quadratic programming problem with linear equality constraints can be parameterized. The case of bi-criteria quadratic programming (BCQP) is first discussed since many of the underlying ideas can be explained much more clearly in the case of two objectives. In particular we note that the efficient solution set of a BCQP problem is a curve on the surface of a polytope. The extension to problems with more than two objectives is straightforward albeit some slightly more complicated notation. Two numerical examples are given to illustrate the proposed methods.  相似文献   

8.
On piecewise quadratic Newton and trust region problems   总被引:1,自引:0,他引:1  
Some recent algorithms for nonsmooth optimization require solutions to certain piecewise quadratic programming subproblems. Two types of subproblems are considered in this paper. The first type seeks the minimization of a continuously differentiable and strictly convex piecewise quadratic function subject to linear equality constraints. We prove that a nonsmooth version of Newton’s method is globally and finitely convergent in this case. The second type involves the minimization of a possibly nonconvex and nondifferentiable piecewise quadratic function over a Euclidean ball. Characterizations of the global minimizer are studied under various conditions. The results extend a classical result on the trust region problem. Partially supported by National University of Singapore under grant 930033.  相似文献   

9.
A basic algorithm for the minimization of a differentiable convex function (in particular, a strictly convex quadratic function) defined on the convex hull of m points in R n is outlined. Each iteration of the algorithm is implemented in barycentric coordinates, the number of which is equal to m. The method is based on a new procedure for finding the projection of the gradient of the objective function onto a simplicial cone in R m , which is the tangent cone at the current point to the simplex defined by the usual constraints on barycentric coordinates. It is shown that this projection can be computed in O(m log m) operations. For strictly convex quadratic functions, the basic method can be refined to a noniterative method terminating with the optimal solution.  相似文献   

10.
In this paper, a new type of stepsize, approximate optimal stepsize, for gradient method is introduced to interpret the Barzilai–Borwein (BB) method, and an efficient gradient method with an approximate optimal stepsize for the strictly convex quadratic minimization problem is presented. Based on a multi-step quasi-Newton condition, we construct a new quadratic approximation model to generate an approximate optimal stepsize. We then use the two well-known BB stepsizes to truncate it for improving numerical effects and treat the resulted approximate optimal stepsize as the new stepsize for gradient method. We establish the global convergence and R-linear convergence of the proposed method. Numerical results show that the proposed method outperforms some well-known gradient methods.  相似文献   

11.
We present a new method for minimizing a strictly convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions (thus the row-action nature of the algorithm) and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. Convergence of the algorithm is established and the method is compared with other row-action algorithms for several relevant particular cases.Corresponding author. Research of this author was partially supported by CNPq grant No. 301280/86.  相似文献   

12.
The spectral projected gradient method SPG is an algorithm for large-scale bound-constrained optimization introduced recently by Birgin, Martínez, and Raydan. It is based on the Raydan unconstrained generalization of the Barzilai-Borwein method for quadratics. The SPG algorithm turned out to be surprisingly effective for solving many large-scale minimization problems with box constraints. Therefore, it is natural to test its perfomance for solving the sub-problems that appear in nonlinear programming methods based on augmented Lagrangians. In this work, augmented Lagrangian methods which use SPG as the underlying convex-constraint solver are introduced (ALSPG) and the methods are tested in two sets of problems. First, a meaningful subset of large-scale nonlinearly constrained problems of the CUTE collection is solved and compared with the perfomance of LANCELOT. Second, a family of location problems in the minimax formulation is solved against the package FFSQP.  相似文献   

13.
The global minimization of large-scale partially separable non-convex problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of a separable concave part, an unseparated convex part, and a strictly linear part, which are all coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. An important special class of problems which can be reduced to this form are the synomial global minimization problems. Such problems often arise in engineering design, and previous computational methods for such problems have been limited to the convex posynomial case. In the current work, a convex underestimating function to the objective function is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and convex underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results obtained on the four processor Cray 2, both sequentially and in parallel on all four processors, are also presented.  相似文献   

14.
首先将一个具有多个约束的规划问题转化为一个只有一个约束的规划问题,然后通过利用这个单约束的规划问题,对原来的多约束规划问题提出了一些凸化、凹化的方法,这样这些多约束的规划问题可以被转化为一些凹规划、反凸规划问题.最后,还证明了得到的凹规划和反凸规划的全局最优解就是原问题的近似全局最优解.  相似文献   

15.
This Note deals with the boundary null-controllability of linear diffusion–reaction equations in a 2D bounded domain. We transform the determination of the sought HUM boundary control into the minimization of a continuous and strictly convex functional. In the case of a rectangular domain where the diffusion tensor is represented by a diagonal matrix, we establish a procedure based on the inner product method that uses a complete orthonormal family of Sturm–Liouville's eigenfunctions to express explicitly the sought control.  相似文献   

16.
Oviedo  Harry  Andreani  Roberto  Raydan  Marcos 《Numerical Algorithms》2022,90(3):1225-1252
Numerical Algorithms - We introduce a family of weighted conjugate-gradient-type methods, for strictly convex quadratic functions, whose parameters are determined by a minimization model based on a...  相似文献   

17.
The family of feasible methods for minimization with nonlinear constraints includes the nonlinear projected gradient method, the generalized reduced gradient method (GRG), and many variants of the sequential gradient restoration algorithm (SGRA). Generally speaking, a particular iteration of any of these methods proceeds in two phases. In the restoration phase, feasibility is restored by means of the resolution of an auxiliary nonlinear problem, generally a nonlinear system of equations. In the minimization phase, optimality is improved by means of the consideration of the objective function, or its Lagrangian, on the tangent subspace to the constraints. In this paper, minimal assumptions are stated on the restoration phase and the minimization phase that ensure that the resulting algorithm is globally convergent. The key point is the possibility of comparing two successive nonfeasible iterates by means of a suitable merit function that combines feasibility and optimality. The merit function allows one to work with a high degree of infeasibility at the first iterations of the algorithm. Global convergence is proved and a particular implementation of the model algorithm is described.  相似文献   

18.
A proximal-based decomposition method for convex minimization problems   总被引:10,自引:0,他引:10  
This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow for computing approximately the proximal minimization steps and we prove that under mild assumptions on the problem's data, the method is globally convergent and at a linear rate. The method is compared with alternating direction type methods and applied to the particular case of minimizing a convex function over a finite intersection of closed convex sets.Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National Science Foundation Grant DMS-9201297.  相似文献   

19.
The coordinate descent method enjoys a long history in convex differentiable minimization. Surprisingly, very little is known about the convergence of the iterates generated by this method. Convergence typically requires restrictive assumptions such as that the cost function has bounded level sets and is in some sense strictly convex. In a recent work, Luo and Tseng showed that the iterates are convergent for the symmetric monotone linear complementarity problem, for which the cost function is convex quadratic, but not necessarily strictly convex, and does not necessarily have bounded level sets. In this paper, we extend these results to problems for which the cost function is the composition of an affine mapping with a strictly convex function which is twice differentiable in its effective domain. In addition, we show that the convergence is at least linear. As a consequence of this result, we obtain, for the first time, that the dual iterates generated by a number of existing methods for matrix balancing and entropy optimization are linearly convergent.This work was partially supported by the U.S. Army Research Office, Contract No. DAAL03-86-K-0171, by the National Science Foundation, Grant No. ECS-8519058, and by the Science and Engineering Research Board of McMaster University.  相似文献   

20.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号