首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the wetting by water of complex "hydrophobic-hydrophilic" surfaces made of a hydrophobic substrate covered by a hydrophilic polymer brush. Polystyrene (PS) substrates covered with polystyrene- block-poly(acrylic acid) PS- b-PAA diblock copolymer layers were fabricated by Langmuir-Schaefer depositions and analyzed by atomic force microscopy (AFM) and ellipsometry. On bare PS substrate, we measured advancing angles theta A = 93 +/- 1 degrees and receding angles theta R = 81 +/- 1 degrees . On PS covered with poorly anchored PS- b-PAA layers, we observed large contact angle hysteresis, theta A approximately 90 degrees and theta R approximately 0 degrees , that we attributed to nanometric scale dewetting of the PS- b-PAA layers. On well-anchored PS- b-PAA layers that form homogeneous PAA brushes, a wetting transition from partial to total wetting occurs versus the amount deposited: both theta A and theta R decrease close to zero. A model is proposed, based on the Young-Dupre equation, that takes into account the interfacial pressure of the brush Pi, which was determined experimentally, and the free energy of hydration of the polyelectrolyte monomers Delta G PAA (hyd), which is the only fitting parameter. With Delta G PAA (hyd) approximately -1300 J/mol, the model renders the wetting transition for all samples and explains why the wetting transition depends mainly on the average thickness of the brush and weakly on the length of PAA chains.  相似文献   

2.
A new strategy has been well designed to form upended taper-shaped cuprous thiocyanate (hereafter abbreviated as CuCNS) arrays on a copper substrate with use of a simple solution-phase method at room temperature. This method consists of a liquid-solid reaction between a solution of thiocyanate ammonium and the copper substrate itself in the assistance of formamide. Novel CuCNS arrays are approximately perpendicular to copper substrate surfaces. Every single crystal shows an upended taper-like morphology (i.e., the tip end points into the surface of copper substrate and the other big end of the taper exposes out, like a dart thrusting into the copper substrate). On the basis of structure and chemical bond analysis, CuCNS crystals tend to grow along the c-axis, which is essential for the formation of CuCNS arrays on a copper substrate. This approach also provides a facile strategy to produce different patterns on different copper substrates, which may be applicable to the synthesis of other inorganic materials with various potential applications.  相似文献   

3.
Using InP and PbSe quantum dots, we demonstrate that the Langmuir-Blodgett technique is well-suited to coat nonflat surfaces with quantum dot monolayers. This allows deposition on silicon substrates covered by a developed patterned resist, which results in monolayer patterns with micrometer resolution. Atomic force microscopy and scanning electron microscopy reveal the formation of a densely packed monolayer that replicates predefined structures with high selectivity after photoresist removal. A large variety of shapes can be reproduced and, due to the excellent adhesion of the quantum dots to the substrate, the hybrid approach can be repeated on the same substrate. This final possibility leads to complex, large-area quantum dot monolayer structures with micrometer spatial resolution that may combine different types of quantum dots.  相似文献   

4.
Microfluidic networks is a powerful tool for aligning one-dimensional materials over a large area on solid substrates. Here we show that lipid nano- and microtubules can be assembled into two-dimensional (2-D) parallel arrays with controlled separations by combining fluidic alignment with dewetting, which occurs within microchannels. We also demonstrate that lipid tubules can be bent into a well-defined shape at the entrance of the channels by the capillary force. Atomic force microscopy is used to study the structure and stability of the aligned lipid tubules on substrates. The deposition experiments with silica colloidal particles show that the 2-D parallel-aligned tubules can be used as a template to synthesize silica films with controlled morphologies and patterns on substrates in a single-step process.  相似文献   

5.
Molecular interactions between DNA and an aminated glass substrate   总被引:1,自引:0,他引:1  
With the development of DNA arrays, the immobilization of DNA strands onto solid substrates remains an essential research topic. DNA arrays have potential applications in DNA sequencing, mutation detection, and pathogen identification. DNA bound to solid substrates must still be accessible and retain the ability to hybridize with its complementary strands. One technology to produce these arrays involves linking DNA molecule probes to a silanized substrate in microspot patterns and exposing them to a solution of fluorescently labeled samples of DNA targets. The behavior of both the target and probe DNA and their interactions with each other at the substrate surface, particularly with respect to molecular interactions, are poorly understood at the present time. The objective of this work is to model simply the interface interactions between DNA and glass slides modified with an aminosilane (gamma-aminopropyltriethoxysilane, APTS). In aqueous solutions, DNA behaves as a polyacid over a wide range of pH. A glass substrate treated with APTS is positively or negatively charged, depending on the pH. A model of the surface charge of APTS-treated glass has been developed from results of wetting experiments performed at various pH. It has been demonstrated that the surface charge of APTS-treated glass is well described by a model of constant capacitance of the electrical double layer. A good correlation between experimental data on DNA retention at various pH's and the variation of the surface charge of the APTS-treated glass is obtained. This provides an indication of the role of ionic interactions in the adsorption of DNA molecules onto aminated glass slides.  相似文献   

6.
Heinz WF  Hoh M  Hoh JH 《Lab on a chip》2011,11(19):3336-3346
Protein micropatterned substrates have emerged as important tools for studying how cells interact with their environment, as well as allowing useful experimental control over, for example, cell shape and cell position on a surface. Here we present a new approach for protein micropatterning in which a focused laser is used to locally inactivate proteins on a protein-coated substrate. By translating the laser relative to the substrate, protein patterns of essentially arbitrary shape can be produced. This approach has a number of useful features. To begin, it is a maskless writing approach. Thus new patterns can be designed and implemented quickly. Laser inactivation can also be performed on a number of different substrate materials, ranging from glass to polydimethylsiloxane. Further, the inactivation is dose dependent, thus complex gradients and other non-uniform distributions of proteins can be produced. Because the focus of the laser can be changed quickly, laser-based patterning can also be applied to substrates with complex topographies or enclosed surfaces--as long as an optical path is available. To demonstrate this capability, protein patterns were made on the inside of small quartz capillary tubes. Patterned substrates produced using laser inactivation constrain cell shape in predictable ways, and we show that these substrates are compatible with a number of different eukaryotic cell lines.  相似文献   

7.
Drops containing suspended particles are placed on surfaces of patterned wettability created using soft lithography; the drop diameter is large compared to the dimensions of the patterns on the substrate. As the three-phase contact line of the drop recedes, spontaneous dewetting of the hydrophobic domains and flow into the hydrophilic domains create discrete fluid elements with peripheries that can mimic the underlying surface topography. Suspended particles are carried with the fluid into the wetted regions and deposit there as the discrete fluid domains evaporate. If particle volume fractions are sufficiently high, the entire wetted domain can be covered with colloidal crystals. At lower volume fractions, flow within the evaporating fluid element can direct the deposition of colloidal particles at the peripheries of the domains. High-resolution arrays of particles were obtained with a variety of features depending upon the relative size of the wetting regions to the particles. When the wetting region is larger than the particles, three-dimensional and two-dimensional arrays of ordered particles mimicking the shape of the wetting pattern form, depending on the particle volume fraction. For lower volume fractions, one-dimensional (1-D) arrays along the wet/non-wet boundaries form. When the particle size is similar to the height of fluid on the wetted domain, zero-dimensional distributions of single particles centered in the wet regions can form for wetted squares or 1-D distributions (stripes) form along the axis of striped domains. Finally, when the wetting region is smaller than the particle size, the particles do not deposit within the features but are drawn backward with the receding drop. These results indicate that evaporation on surfaces of patterned wetting provides a highly parallelizable means of tailoring the geometry of particle distributions to create patterned media.  相似文献   

8.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

9.
Here, 5 nm Ag nanocrystals are deposited, using the same procedure, on various substrates differing by their rms roughness, wetting properties and nanoparticle-substrate interactions leading, consequently, to different nanocrystal orderings. Theoretical calculations are carried out to understand how these parameters influence the size of the nanocrystal organizations on the substrate surface. When these nanocrystal arrays are subjected to an oxygen plasma treatment, the nanocrystals perfectly assembled in hexagonal networks remain intact, while the nanocrystals that are not well-packed coalesce to form larger particles independently on the used substrate. This phenomenon is observed on the entire substrate surface. This procedure gives an innovative way of using oxygen plasma generated by the reactive ion etching technique, as a new method to reveal defects in 2D Ag nanocrystal self-assemblies.  相似文献   

10.
This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.  相似文献   

11.
Recent advances in microfabrication have allowed one to pattern the surface of a solid substrate with patches of different wettabilities on the micrometer-sized scale. These textured surfaces provide a well-characterized model system for studying the wetting and dewetting behaviors of liquids on heterogeneous surfaces. They also present a well-defined template to direct the self-organization of liquids on the surfaces of solid substrates, and to form patterned microstructures of various materials without using expensive, clean-room facilities. As demonstrated in a number of studies, the three-dimensional morphologies of the liquid microstructures could be easily controlled by changing the two-dimensional features patterned on the surface of a solid substrate. These demonstrations suggest that microfabrication based on surface patterning and selective wetting or dewetting will offer immediate advantages in applications such as fabrication of microreactor arrays and microfluidic devices, where a liquid (or solution) is the primary material to be patterned.  相似文献   

12.
We report on a novel technique to nucleate nanometer-sized droplets on a solid substrate and to image them with minimal perturbation by noncontact atomic force microscopy (NC-AFM). The drop size can be accurately controlled, thus permitting hysteresis measurements. We have studied the nanoscale wettability of several methyl-terminated substrates prepared by the self-assembly of organic molecules. These substrates are alkyltrichlorosilanes on silica, alkylthiols on gold, alkyl chains on hydrogen-terminated silicon, and crystalline hexatriacontane chains on silica. For each of these systems, we report a deviation of the wetting contact angle from the macroscopic value, and we discuss this effect in term of mesoscale surface heterogeneity and long-range solid-liquid interactions.  相似文献   

13.
We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.  相似文献   

14.
以DNA为模板构造苯胺-DNA复合物纳米线和聚苯胺纳米导线   总被引:6,自引:0,他引:6  
在溶液中, 以DNA为模板构造出了线性的苯胺-DNA复合物纳米线. 用压缩气流将得到的复合物纳米线拉直并固定到云母基底上. 用原子力显微镜(AFM)可观察到形貌规整的苯胺-DNA复合物纳米线. 苯胺单体在溶液中能从各个方向上组装到DNA分子上, 从而使DNA模板分子的表面包裹了一层苯胺. 以苯胺-DNA复合物纳米线为前驱体通过进一步化学氧化聚合得到了以DNA为模板的聚苯胺纳米导线.  相似文献   

15.
Controlled particle placement through convective and capillary assembly   总被引:2,自引:0,他引:2  
A wide variety of methods are now available for the synthesis of colloidal particle having controlled shapes, structures, and dimensions. One of the main challenges in the development of devices that utilize micro- and nanoparticles is still particle placement and integration on surfaces. Required are engineering approaches to control the assembly of these building blocks at accurate positions and at high yield. Here, we investigate two complementary methods to create particle assemblies ranging from full layers to sparse arrays of single particles starting from colloidal suspensions of gold and polystyrene particles. Convective assembly was performed on hydrophilic substrates to create crystalline mono- or multilayers using the convective flow of nanoparticles induced by the evaporation of solvent at the three-phase contact line of a solution. On hydrophobic surfaces, capillary assembly was investigated to create sparse arrays and complex three-dimensional structures using capillary forces to trap and organize particles in the recessed regions of a template. In both methods, the hydrodynamic drag exerted on the particle in the suspension plays a key role in the assembly process. We demonstrate for the first time that the velocity and direction of particles in the suspension can be controlled to perform assembly or disassembly of particles. This is achieved by setting the temperature of the colloidal suspension above or below the dew point. The influence of other parameters, such as substrate velocity, wetting properties, and pattern geometry, is also investigated. For the particular case of capillary assembly, we propose a mechanism that takes into account the relative influences of these parameters on the motion of particles and that describes the influence of temperature on the assembly efficiency.  相似文献   

16.
Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tung-sten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct elec-trical and chemical contact with the underside substrate electrode. The as-deposited sam-ples were annealed at 450 oC in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 μm, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and highresolution transmission electron microscopy showed that chalcopyrite polycrystalline struc-ture and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.  相似文献   

17.
This work gives an overview of the possibilities to improve the wetting behavior of precursors for coated conductors on non-porous substrates. Within this work, all coatings were performed on a metallic Ni–W/La2Zr2O7/CeO2 substrate using water-based Y, Ba, Cu containing precursors. The results described in this paper can be used for different technologies of chemical solution deposition, as there are ink jet printing, dip coating, spin coating etc. Starting from the forces involved during wetting, a separation between solid and liquid modifications was made. This study revealed that if a good cleaning procedure of the substrate, whether or not combined with a targeted modification of the precursor is applied, water-based solutions can be used without restriction towards their wetting behaviour leading to a sustainable technology within the coating industry. Within this work, special attention is given to (1) fast determination of the substrate cleaning procedure quality by the creation of wetting envelopes and (2) the use of a screening design of experiment to study the effects of intrinsic solution factors, such as precursor formulation, influencing the coating behavior. All modification discussed are expandable to all kinds of precursors and substrates.  相似文献   

18.
Si convex arrays and Si hole arrays with ordered periodicities were fabricated by the site-selective chemical etching of a Si substrate using patterned Ag nanoparticles as a catalyst. Ag particles were deposited selectively on the Si substrate by a combination of colloidal crystal templating, hydrophobic treatment and subsequent electroless plating. The obtained Ag patterns were of two different types: network-like honeycomb and isolated-island microarrays. The transfer of ordered patterns fabricated by Ag plating onto the Si substrate could be achieved by the selective chemical etching of a Ag-coated Si area using Ag particles as the etching catalyst. On the basis of this process, it is possible to fabricate negative and positive patterns by changing the arrangement of deposited Ag patterns.  相似文献   

19.
Zinc Oxide (ZnO) nanorod arrays were grown on different substrates by hydrothermal method. The crystallinity of ZnO nanorod was regularly investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine morphology of the ZnO nanorods. The results indicate that the nanorods grow along [002] orientation. SEM and TEM images and XRD patterns show that the growth of ZnO nanorods on graphene/Quartz substrate is better than the other substrates due to the number and size of the nanorods which are highly affected through the properties of ZnO seed layers and it has lower defects than the other substrates. PL spectra ZnO would have a higher concentration of oxygen vacancy.  相似文献   

20.
Two efficient approaches to assembling organic semiconducting single crystals are described. The methods rely on solvent wetting and dewetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. Substrates were functionalized with different self-assembled monolayers (SAMs) to achieve the desired wettabilities. The assembly of different organic crystals over centimeter-squared areas on Au, SiO2, and flexible plastic substrates was demonstrated. By designing line features on the substrate, the alignment of crystals, such as CuPc needles, was also achieved. As a demonstration of the potential application of this assembly approach, arrays of single-crystal organic field-effect transistors were fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号