首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phonons in Ge/Si quantum dot structures: influence of growth temperature   总被引:1,自引:0,他引:1  
In this paper we present the results of a Raman study of Ge/Si quantum dot (QD) superlattices grown with different thicknesses of a Si interlayer and at different substrate temperatures. The built-in strain and atomic intermixing in the QDs are deduced from an analysis of optical phonon frequencies of the QDs obtained from Raman spectra of the structures.  相似文献   

2.
Excitonic transitions of single InAs self-assembled quantum dots were directly measured at 4.2 K in an optical transmission experiment. We use the Stark effect in order to tune the exciton energy of a single quantum dot into resonance with a narrow-band laser. With this method, sharp resonances in the transmission spectra are observed. The oscillator strengths as well as the homogeneous line widths of the single-dot optical transitions are obtained. A clear saturation in the absorption is observed at modest laser powers.  相似文献   

3.
We discuss the preparation and spectroscopic characterisation of a single InAs/InP quantum dot suitable for long-distance quantum key distribution applications around λ=1.55 μm. The dot is prepared using a site-selective growth technique which allows a single dot to be deposited in isolation at a controlled spatial location. Micro-photoluminescence measurements as a function of exciton occupation are used to determine the electronic structure of the dot. Biexciton emission, shell filling and many-body re-normalization effects are observed for the first time in single InAs/InP quantum dots.  相似文献   

4.
Polaron decay in n-type InAs quantum dots has been investigated using energy dependent, mid-infrared pump–probe spectroscopy. By studying samples with differing ground state to first excited state energy separations the relaxation time has been measured between 40 and 60 meV. The low-temperature decay time increases with increasing detuning between the pump energy and the optical phonon energy and is maximum (55 ps) at 56 meV. From the experimentally determined decay times we are able to extract a low-temperature optical phonon lifetime of 13 ps for InAs QDs. We find that the polaron decay time decreases by a factor of 2 at room temperature due to the reduction of the optical phonon lifetime.  相似文献   

5.
We have investigated the carrier relaxation dynamics in single columns of tenfold stacked vertically aligned InAs quantum dots by micro-photoluminescence measurement. The excitation spectrum in the stacked dots is much different from that in the single dot characterized by the existence of a zero-absorption region and sharp multiple phonon emission lines. We have observed a broad continuum absorption far below the wetting layer band edge in the spectrum of the single columns although we have confirmed the existence of a zero-absorption region in the same sample with reduced number of dot layers to almost single, realized by surface etching. The broad absorption feature suggests the existence of additional carrier relaxation channels through non-resonant tunneling between the dots.  相似文献   

6.
We report the first direct observation of Huang–Rhys side-bands in the photoluminescence spectrum of a single InAs/GaAs quantum dot (QD). At low temperature (10 K) the single QD spectrum has a quasi-Lorentzian profile. At higher temperatures, we observe a strong deviation from a Lorentzian profile with the appearance of asymmetric side-bands which become symmetric above 70 K. We obtain an excellent agreement with theoretical calculations done in the framework of the Huang–Rhys formalism. We conclude that the zero-phonon linewidth is the relevant parameter for the observation of the low-energy acoustic phonon side-bands.  相似文献   

7.
We use frequency-dependent capacitance–voltage spectroscopy to study the dynamic charging of self-assembled InAs quantum dots. With increasing frequency, the AC charging becomes suppressed, beginning with the low-energy states. By applying an in-plane magnetic field, we generate an additional magnetic confinement that alters the tunneling barrier and hence the charging dynamics. In traveling through the potential barrier, the electrons acquire an additional momentum k0, proportional to the magnetic field B. As the tunneling is enhanced, when k0 matches the maximum of the electronic wave function Ψ (in momentum representation), we are able to map out the shape of Ψ by varying B.  相似文献   

8.
We present a model that treats the inter-band optical transitions within a non-perturbative framework which incorporates .both the coherent coupling to light and the incoherent coupling to different reservoirs. It allows us to calculate the photoluminescence line shape and also to simulate its excitation experiments on actual single dots.  相似文献   

9.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

10.
We analyze the electroluminescence spectrum of an STM-tip-induced quantum dot in a GaAs surface layer. A flexible model has been developed, that combines analytical and numerical methods and describes the key features of many-particle states in the STM-tip-induced quantum dot. The dot is characterized by its depth and lateral width, which are experimentally controlled by the bias and the tunneling current. We find, in agreement with experiment, that increasing voltage on the STM-tip results in a red shift of the electroluminescence peaks, while the peak positions as a function of the electron tunneling current through the STM-tip reveal a blue shift.  相似文献   

11.
The hole system in InAs quantum dots was investigated by frequency-dependent capacitance–voltage spectroscopy. Up to eight distinct charging peaks could be observed and the energy difference between the individual peaks could be estimated. All charging peaks decrease with increasing measurement frequency; however, the lower the energy of the hole level the stronger the decrease. A comparison with the results of the electron system in similar quantum dots yields that for all hole levels the effective mass in the barrier is much larger than in the electron system.  相似文献   

12.
We report on the measurements of the photoluminescence from the s-shell of a single InAs/GaAs quantum dot in magnetic fields up to 23 T. The observed multiline emission is attributed to different charge states of a single dot. Characteristic anticrossing of emission lines is explained in terms of hybridization of final states of a triply charged exciton (X−3).  相似文献   

13.
Excess current was obtained in GaAs/InAs quantum dot structures at low temperatures and low current levels. This excess current exhibited instabilities with changing the bias, and over the time. It has been concluded that the excess current is a minority injection current connected with recombination through defects originated from the formation of QDs. The instabilities are connected with unstable occupation of energy levels induced by the above defects, which depend on temperature and on the current level.  相似文献   

14.
The hole confinement in type-II self-organized GaSb/GaAs quantum dots (QDs) was investigated by combining optical excitation and time-resolved capacitance spectroscopy. The experimental results indicate energy-selective charging even for type-II QDs. With increasing excitation energy the apparent hole activation energy decreases, which is attributed to light absorption in sub-ensembles of QDs with decreasing hole localization. The large localization energy of about 450 meV and the possibility of optical-multiplexing makes type-II GaSb/GaAs QDs a potential material system for QD memory concepts.  相似文献   

15.
We studied optical and electron transport properties of coupled InAs quantum dots (QDs) embedded in GaAs. Photoluminescence (PL) from the high dot density samples indicated asymmetry in the PL spectra when the ambient temperature is lower than about 50 K. Comparing this result with theoretical calculations, it is shown that this phenomenon is explained by the inter-dot electronic coupling effect. In the photo-conductance measurement, resonance peaks in the current–voltage characteristics were observed in the low-temperature region. The dependence of the resonance voltage on the magnetic field intensity was studied to extract the g-factor. It is also shown that the resonances are attributed to the current corresponding to the electron transport through QDs. According to these results, it is concluded that the inter-dot electronic coupling in the self-assembled InAs/GaAs QD systems occurs when the inter-dot spacing is as low as several nanometers and the ambient temperature is less than about 50 K.  相似文献   

16.
The confinement energy of T-shaped quantum wires (QWRs), which were fabricated by the cleaved edge overgrowth technique in a way that the QWRs form at the intersection of In0.2Al0.8As stressor layers and the overgrown (1 1 0) GaAs quantum well (QW), is examined using micro-photoluminescence spectroscopy. Photoluminescence (PL) signals from individual QWRs can be spatially resolved, since the strained films are separated by 1 μm wide Al0.3Ga0.7As layers. We find that due to the tensile strain being transmitted to the QW, the confinement energy of the QWRs rises systematically up to 40 meV with increasing thickness of the stressor layers. By reducing the excitation power to 0.1 μW the QWR PL emission occurs 48 meV redshifted with respect to the QW. All QWR peaks exhibit smooth lineshapes, indicating the absence of pronounced exciton localization.  相似文献   

17.
Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.  相似文献   

18.
A pronounced modulation is observed in the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots (QDs), recorded at low excitation densities. The clearly distinguishable peaks are identified as a multimodal distribution of the ground state transition energy, originating from a discrete, stepwise variation of the structural properties of the QDs, which is associated with an increase of the QD height in monolayer (ML) steps. The observation of a ML splitting implies a flat QD shape with well-defined upper and lower interfaces as well as negligible indium segregation. The electronic properties of the InAs/GaAs QDs were investigated by PL and PL-excitation spectroscopy and are discussed based on realistic calculations for flat InAs/GaAs QDs with a truncated pyramidal shape based on an extended 8-band k·p model. The calculations predict a red shift of the ground state transition with each additional ML, which saturates for heights above 9 ML, is in good agreement with experiment.  相似文献   

19.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

20.
We show how the atomistic pseudopotential many-body theory of InGaAs/GaAs addresses some important effects, including (i) the fine-structure splittings (originating from interband spin exchange), (ii) the optical spectra of charged quantum dots and (iii) the degree of entanglement in a quantum dot molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号