首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface-modified slides with aminated DNA probes. Moreover, the TC tag only costs 30% of the commonly used amino group modifications. Using this microarray fabrication technique, a portable cyclic olefin copolymer biochip containing eight individually addressable microfluidic channels was developed and used for rapid and parallel identification of Avian Influenza Virus by DNA hybridization. The one-step, cost-effective DNA-linking method on non-modified polymers significantly simplifies microarray fabrication procedures and permits great flexibility to plastic material selection, thus making it convenient to integrate microarrays into plastic microfluidic systems.  相似文献   

2.
Chemically induced hairpin formation in DNA monolayers   总被引:5,自引:0,他引:5  
A naphthyridine dimer that binds specifically to G-G mismatches has been used to induce hairpin formation in oligonucleotides immobilized onto chemically modified gold surfaces. Surface plasmon resonance (SPR) imaging measurements of DNA microarrays were used to demonstrate that binding of the naphthyridine dimer to G-G mismatches within the stem portion of an immobilized 42-mer oligonucleotide could be used to induce hairpin formation that prevented hybridization of DNA complementary to the loop sequence. In addition, the selectivity of the naphthyridine dimer for G-G mismatches was verified through SPR imaging measurements of the hybridization adsorption of an 11-mer oligonucleotide to a four-component DNA array of zero- and single-base mismatch sequences.  相似文献   

3.
A versatile method for direct, covalent attachment of DNA microarrays at silicon nitride layers, previously deposited by chemical vapor deposition at silicon wafer substrates, is reported. Each microarray fabrication process step, from silicon nitride substrate deposition, surface cleaning, amino-silanation, and attachment of a homobifunctional cross-linking molecule to covalent immobilization of probe oligonucleotides, is defined, characterized, and optimized to yield consistent probe microarray quality, homogeneity, and probe-target hybridization performance. The developed microarray fabrication methodology provides excellent (high signal-to-background ratio) and reproducible responsivity to target oligonucleotide hybridization with a rugged chemical stability that permits exposure of arrays to stringent pre- and posthybridization wash conditions through many sustained cycles of reuse. Overall, the achieved performance features compare very favorably with those of more mature glass based microarrays. It is proposed that this DNA microarray fabrication strategy has the potential to provide a viable route toward the successful realization of future integrated DNA biochips.  相似文献   

4.
A new approach to oligonucleotide arrays is demonstrated that utilizes zirconium phosphonate-derivatized glass slides. The active slides are prepared by binding Zr(4+) to surfaces terminated with organophosphonate groups previously deposited using either Langmuir-Blodgett or self-assembled monolayer methods. Oligonucleotide probes modified with a terminal phosphate bind strongly to the active zirconium phosphonate monolayer, and arrays for detecting fluorescent targets have been prepared using commercial spotting and scanning instruments. Preferred binding to the surface of the terminal phosphate of the modified probes instead of the internal phosphate diester groups is demonstrated and shown to yield increased fluorescence intensity after hybridization with labeled targets. A significant decrease in background signal is achieved by treating the slides with bovine serum albumin after spotting and before hybridization. A further increase in fluorescence after hybridization is observed when using a poly-guanine spacer between the probe oligomer and the terminal phosphate. Combining these modifications, an intensity ratio of nearly 1000 is achieved when comparing 5'-phosphate-modified 33-mer probes with unmodified probes upon hybridization with fluorescent targets.  相似文献   

5.
6.
Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.  相似文献   

7.
One of the main factors that can affect the quality of microarray results is the microarray hybridization specificity. The key factor that affects hybridization specificity is the design of the probes. In this paper, we described a novel oligonucleotide probe containing deoxyinosines aimed at improving DNA hybridization specificity. We compared different probes to determine the distance between deoxyinosine base and SNPs site and the number of deoxyinosine bases. The new probe sequences contained two set of deoxyinosines (each set had two deoxyinosines), in which the interval between SNP site and each set of deoxyinosines was two bases. The new probes could obtain the highest hybridization specificity. The experimental results showed that probes containing deoxyinosines hybridized effectively to the perfectly matched target and improved the hybridization specificity of DNA microarray. By including a simple washing step after hybridization, these probes could distinguish matched targets from single‐base‐mismatched sequences perfectly. For the probes containing deoxyinosines, the fluorescence intensity of a match sequence was more than eight times stronger than that of a mismatch. However, the intensity ratio was only 1.3 times or less for the probes without deoxyinosines. Finally, using hybridization of the PCR product microarrays, we successfully genotyped SNP of 140 samples using these new labeled probes. Our results show that this is a useful new strategy for modifying oligonucleotide probes for use in DNA microarray analysis.  相似文献   

8.
The fabrication of antibody thin film using both protein G and oligonucleotide was carried out by self-assembly (SA) technique for immunosensor. A mixture of 11-mercaptoundecanoic acid (MUA) and oligonucleotide with thiol (SH) end group was self-assembled of gold (Au) surface for two-dimensional (2D) configuration. Protein G was chemically adsorbed on the 11-MUA surface, and then the antibody was immobilized on the protein G region. On the immobilized single-stranded DNA, the complementary DNA–antibody conjugate was hybridized for the oriented immobilization of antibody. The formation of self-assembled 11-MUA/oligonucleotide layer, protein G immobilization, antibody layer, and antigen binding was investigated using surface plasmon resonance (SPR). The topographies of the fabricated surfaces were observed by atomic force microscopy (AFM). When compared with the amount of antigen binding on the antibody thin film fabricated by protein G only, the proposed biosurface fabricated with both protein G and oligonucleotide showed better binding capacity, which implicates the improvement of the detection limit.  相似文献   

9.
10.
Commercially available polystyrene (PS) slides were plasma nanotextured (nano-roughened) through treatment in oxygen plasma discharges to create substrates with increased surface area for microarray applications. Conditions of plasma treatment were determined for maximum and uniform oligonucleotide immobilization on these nanotextured PS slides. Oligonucleotides were immobilized onto the surface in the form of biotinylated oligonucleotide/streptavidin conjugates to take advantage of increased protein binding capacity of the substrate. It was found that the amount of oligonucleotides that could be immobilized was increased up to ten times on plasma treated as compared with untreated slides. The sensitivity of detection of labelled hybridized probes was improved by a factor of 20. Optimized nanotextured PS slides were subsequently used to develop a microarray for the detection of three deleterious BRCA1 gene mutations by immobilizing oligonucleotides corresponding to wild and mutant-type sequences. The microarray developed on the nanotextured PS slides provided higher specific hybridization signal and discrimination ratios as compared with flat untreated PS slides.  相似文献   

11.
For the first time we report on the production of oligonucleotide microarrays using a highly parallel and highly integrated, pressure driven TopSpot nanoliter dispenser. The system enables non-contact printing of different media like oligonucleotides, DNA or protein solutions. We optimized the printing buffer needed for oligonucleotides microarrays production with respect to two major aspects: microfluidical optimum for droplet dispensing and biochemical coupling efficiency on different commercially available microarray slides. Coefficient of variations (CVs) of generated spot diameters were measured to be smaller than 1% within one single dispensing nozzle and smaller than 1.5% within all 24 parallel nozzles of the printhead for all printing buffers used. No carry-over and no cross-talk was found, in extensive experiments with oligonucleotides. Optimized printing buffer compositions and concentrations for oligonucleotide microarrays were found, as well as optimized coupling protocols. Furthermore, buffers and protocols were adapted to a host of different microarray slides used. With this system, prime critical points of microarray production are solved, leading to high quality high throughput microarray fabrication.  相似文献   

12.
张志祥  沈铮  赵辉  李宾  宋世平  胡钧  林炳承  李民乾 《化学学报》2005,63(18):1743-1746
在活化的石英片上制作蛋白质和DNA微点阵, 并可逆地将其与含有通道的多聚二甲基硅氧烷弹性橡胶封接在一起, 使蛋白质和DNA微点阵组装在微通道列阵内; 实现在微通道列阵内同时检测和分析蛋白质与DNA的功能. 为了降低多聚二甲基硅氧烷弹性橡胶的疏水性, 增强其生物相容性, 实验通过多聚赖氨酸对多聚二甲基硅氧烷弹性橡胶的修饰, 提高了它的亲水性, 使溶液能够在微通道内顺畅地流通. 实验表明, 这种混合芯片能够提高检测速度和增加检测的信息量.  相似文献   

13.
14.
Lee HH  Smoot J  McMurray Z  Stahl DA  Yager P 《Lab on a chip》2006,6(9):1163-1170
A recirculating microfluidic device fabricated by laminating Mylar and glass was developed for the analysis of hybridization of oligonucleotides to DNA microarrays. The device is part of a system that provides controlled hybridization to DNA probes immobilized in a microarray of polyacrylamide gel pads using recirculation and temperature control. The system was used to obtain real-time kinetics of DNA hybridization and more accurate melting profiles of target-probe duplexes than possible using a static hybridization format. Recirculation shortened the time of perfect match target-probe hybridization from 6 hours to 2 hours and shifted the Td by 1.54 degrees C, relative to static conditions. The experimental results were consistent with a three-dimensional simulation of hybridization using a recirculating buffer system.  相似文献   

15.
A significant challenge exists in the creation of an environment for immobilized probe oligonucleotides that offer good structural regularity and reproducibility, where nearest neighbour interactions provide for control of selectivity, yet where the degree of hybridization does not alter nearest neighbour interactions. This new work explores whether a “matrix isolation” method will produce the desired environment for the probe molecules. The DNA oligonucleotide probes are polyelectrolytes with charged backbones and significant flexibility. It is possible to isolate the probe molecules by surrounding each, on average, with a sheath of immobilized oligomer that is not based on complementary nucleic acid, yet that is a polyelectrolyte in order to control the surface density and charge within the mixed film. Preliminary work investigates a mixture of dT20 as the probe oligonucleotide, and a 20-mer oligomer primarily containing ethylene glycol phosphate, as a matrix isolation material in a 1:20 mole ratio, respectively. Melt temperature (Tm) measurements indicate that the thermodynamic stability of the probe molecules can be adjusted using the oligomer matrix to achieve lower Tm values by up to 5 °C, with full retention of selectivity for discrimination of single base pair mismatches even under conditions where the probes at a surface are saturated with complementary target.  相似文献   

16.
An electrochemical DNA biosensor for specific-sequences detection of Vibrio parahaemolyticus (VP) was fabricated. A single-stranded 20-mer oligonucleotide (ssDNA) and 6-mercapto-1-hexanol (MCH) were immobilized via a thiol linker on gold disk electrodes by self-assembling. The ssDNA underwent hybridization in a hybridization solution containing complementary or non-complementary or single base pair mismatched DNA sequences of VP. Examination of changes in response to these three target DNAs showed that the developed biosensor had a high selectivity and sensitivity.  相似文献   

17.
Treatment of poly(dimethylsiloxane) (PDMS) surfaces with SF(6) plasma results in the creation of high-surface-area nanotextured surfaces that considerably favour protein adsorption with respect to untreated ones. In order to employ such nanotextured surfaces as substrates for microarrays to be created and analysed using standard instrumentation, we fabricated thin PDMS films on top of standard low-cost microscope glass slides. The properties of both untreated and plasma-treated PDMS-coated slides towards spotting of protein solutions were evaluated in terms of spot signal intensity and homogeneity as well as of spot shape and size. It was found that the plasma-treated PDMS-coated glass slides provided highly homogeneous spots (mean intra-spot variation 7.6%) with spot signal intensity 6-times higher than that obtained using the untreated ones. In addition, comparison with commercially available polystyrene and aminosilanized-glass microarray slides showed that the proposed slides provided 3-times higher spot signal intensity and 2-times lower intra-spot signal variation. In addition, the implementation of long-aged-after-plasma-treatment nanotextured PDMS-coated glass slides provided spots whose shape and size matched those of the spotting tip. As a consequence, denser arrays of variable spot shape can be created using SF(6) plasma-treated PDMS-coated slides instead of standard microarray slides opening new potentials for bioanalytical applications.  相似文献   

18.
Treatment of poly(dimethylsiloxane) (PDMS) surfaces with SF6 plasma results in the creation of high-surface-area nanotextured surfaces that considerably favour protein adsorption with respect to untreated ones. In order to employ such nanotextured surfaces as substrates for microarrays to be created and analysed using standard instrumentation, we fabricated thin PDMS films on top of standard low-cost microscope glass slides. The properties of both untreated and plasma-treated PDMS-coated slides towards spotting of protein solutions were evaluated in terms of spot signal intensity and homogeneity as well as of spot shape and size. It was found that the plasma-treated PDMS-coated glass slides provided highly homogeneous spots (mean intra-spot variation 7.6%) with spot signal intensity 6-times higher than that obtained using the untreated ones. In addition, comparison with commercially available polystyrene and aminosilanized-glass microarray slides showed that the proposed slides provided 3-times higher spot signal intensity and 2-times lower intra-spot signal variation. In addition, the implementation of long-aged-after-plasma-treatment nanotextured PDMS-coated glass slides provided spots whose shape and size matched those of the spotting tip. As a consequence, denser arrays of variable spot shape can be created using SF6 plasma-treated PDMS-coated slides instead of standard microarray slides opening new potentials for bioanalytical applications.  相似文献   

19.
We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization-dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multi-step synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ~450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents.  相似文献   

20.
A four-chamber microfluidic biochip is fabricated for the rapid detection of multiple proteins and nucleic acids from microliter volume samples with the technique of surface plasmon resonance imaging (SPRI). The 18 mm × 18 mm biochip consists of four 3 μL microfluidic chambers attached to an SF10 glass substrate, each of which contains three individually addressable SPRI gold thin film microarray elements. The 12-element (4 × 3) SPRI microarray consists of gold thin film spots (1 mm(2) area; 45 nm thickness), each in individually addressable 0.5 μL volume microchannels. Microarrays of single-stranded DNA and RNA (ssDNA and ssRNA, respectively) are fabricated by either chemical and/or enzymatic attachment reactions in these microchannels; the SPRI microarrays are then used to detect femtomole amounts (nanomolar concentrations) of DNA and proteins (ssDNA binding protein and thrombin via aptamer-protein bioaffinity interactions). Microarrays of ssRNA microarray elements are also used for the ultrasensitive detection of zeptomole amounts (femtomolar concentrations) of DNA via the technique of RNase H-amplified SPRI. Enzymatic removal of ssRNA from the surface due to the hybridization adsorption of target ssDNA is detected as a reflectivity decrease in the SPR imaging measurements. The observed reflectivity loss is proportional to the log of the target ssDNA concentration with a detection limit of 10 fM or 30 zeptomoles (18?000 molecules). This enzymatic amplified ssDNA detection method is not limited by diffusion of ssDNA to the interface, and thus is extremely fast, requiring only 200 s in the microliter volume format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号