首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We report on a novel electrochemical method to detect trace pentachlorophenol (PCP) by using a chitosan (CS) modified carbon paste electrode (CS/CPE). Compared with that at a bare carbon paste electrode (CPE), the current response was greatly improved at the CS/CPE due to the enhancement effect of CS. Under optimal working conditions, the oxidation peak current of PCP was proportional to its concentration in the range of 1.0 × 10?7 to 5.0 × 10?6 and 5.0 × 10?6 to 1.0 × 10?4 mol/L, with an extremely low detection limit of 4.0 × 10?8 mol/L. Our method was successfully used to detect the PCP concentration in vegetable samples.  相似文献   

2.
《Analytical letters》2012,45(4):727-738
Abstract

Several synthetic zeolites such as mazzite, mordenite, zeolite L, zeolite beta, and MCM-41 were tested as electrode modifiers in voltammetric determination of tryptophan. It was found that addition of zeolite beta to the carbon paste would generate the peak current of Trp because of its catalytic effect. The anodic peak currents were proportional to Trp concentrations in the range of 5.0 × 10?7 to 5.0 × 10?3 M. The detection limit was 1.0 × 10?7 M. The influence of several species, especially other amino acids, were tested. The proposed method was applied successfully to the determination of tryptophan in pharmaceutical formulations.  相似文献   

3.
In this paper, a simple, convenient and sensitive electrochemical method has been developed for the determination of C.I. Direct Red 80. A gold nanoparticle modified carbon paste electrode was fabricated and used for study and sensitive determination of Direct Red 80 by cyclic voltammetry and differential pulse voltammetry. The overall analysis involved a two-step procedure: an accumulation step under open-circuit conditions, followed by voltammetric measurements of Direct Red 80 in a 0.1?M phosphate buffer solution at pH?=?3.0. The experimental conditions, such as the medium, pH and accumulation time, were optimised. The oxidation peak current was proportional to the concentration of Direct Red 80 from 5.0?×?10?8 to 5.0?×?10?7?M and 5.0?×?10?7 to 3.0?×?10?6?M, and the detection limit was 1.15?×?10?8?M (S/N?=?3). The proposed method was used to detect Direct Red 80 in natural water and sewage with good accuracy.  相似文献   

4.
《Analytical letters》2012,45(16):2665-2682
Abstract

The oxidation of theophylline was studied at a carbon paste electrode in the presence of cetyltrimethyl ammonium bromide by cyclic and differential pulse voltammetry. The results indicated that the electrochemical responses of theophylline are apparently improved by cetyltrimethyl ammonium bromide, due to the enhanced accumulation of theophylline at carbon paste electrode surface. Under optimal conditions the peak current was proportional to theophylline concentration in the range of 8.0 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.85 × 10?7 M by differential pulse voltammetry. The proposed method was applied to the determination of theophylline in tablet and urine samples.  相似文献   

5.
Hydrophobic ionic liquid-functionalized SBA-15 modified carbon paste electrode (CPSPE) was fabricated, and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra, and chronocoulometry in K3Fe(CN)6/K4Fe(CN)6 solution. Compared with carbon paste electrode (CPE) and SBA-15 modified carbon paste electrode (CSPE), the electron transfer ability was in the sequence as: CPSPE>CSPE>CPE. Meanwhile, the electrocatalytic activity of CPSPE to catechol and hydroquinone was evaluated by cyclic voltammetry, and then, the linear concentration ranges were obtained by the amperometric detection from 2.0?×?10-5 to 3.2?×?10-4 M for catechol and 5.0?×?10-5 to 5.5?×?10-4 M for hydroquinone, with the detection limits of 5.0?×?10-7 and 6.0?×?10-7 M, respectively. The advantages of both ionic liquids and heterogeneous supports made CPSPE exhibit high electrocatalytic activity towards the redox of catechol and hydroquinone by significantly improving their reversibility and enhancing their peak currents. In addition, the present method was applied to the determination of catechol and hydroquinone in artificial wastewater sample, and the results were satisfactory.  相似文献   

6.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

7.
A DNA-modified carbon paste electrode (DNA-CPIE) was designed by using a mixture of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and paraffin oil as the binder. The electrochemistry of rutin at the DNA-CPIE was investigated by cyclic voltammetry and differential pulse voltammetry. Rutin exhibits a pair of reversible redox peaks in buffer solutions of pH 3.0, and respective electrochemical parameters are established. Under the optimal conditions, the oxidative peak current is linear with the concentration of rutin in the range from 8?×?10?9 to 1?×?10?5 mol L?1, and the detection limit is 1.3?×?10?9 mol L?1 (at S/N?=?3). The electrode exhibits higher sensitivity compared to DNA modified carbon paste electrode without ionic liquid and better selectivity comparing with electrodes without DNA. It also showed good performance, stability, and therefore represents a viable method for the determination of rutin.  相似文献   

8.
The applicability of the carbon paste electrode to the determination of trace quantities of mercury has been investigated in a base electrolyte of 0.1 N KSCN + 0.025 N HCl containing 25 ng/ml copper. The detection limit of the mercury determination has a value near 2.5 ng/ml (1.25×10?8 M), if pre-electrolysis is carried out 10 min at ?1.0 V and the current voltage curve is registered with a scan rate of 16.7 mV/sec between ?0.5 and +0.5 V. The peak height is directly proportional to the concentration in the range from 1.25×10?8 to 1.25×10?6 M. With appropriate preconditioning the carbon paste electrode can be used for several measurements without renewing the surface.  相似文献   

9.
A fast and convenient analytical method is presented for the determination of catechin. The electrochemical response of catechin in pH 6.8 phosphate buffer solution is significantly enhanced by immobilization of a film of poly-aspartic acid on the surface of the glassy carbon electrode. The enhancement mechanism and effect factors such as pH value, accumulation time and scan rate, were explored. Under optimum conditions, the differential pulse voltammetry peak current of catechin is proportional to the concentration in the range from 2.5?×?10?7 to 3.0?×?10?5 molL?1, with the detection limit of 7.2?×?10?8 molL?1. This method was also applied to the determination of catechin in tea beverage samples, and the recoveries were from 97.1% to 102.7%.  相似文献   

10.
A novel MCM/ZrO2 nanoparticles modified carbon paste electrode (MZ-CPE) was fabricated and used to study the electro oxidation of epinephrine (EP) and acetaminophen (AC) and their mixtures by electrochemical methods. The modified electrode showed electrocatalytic activity toward EP and AC oxidation with a decrease of the overpotential by 173 mV to a less positive potential for EP at the surface of the MZ-CPE and an increase in peak current at pH 7.0. Differential pulse voltammetry peak currents of EP and AC increased linearly with their concentrations in the ranges of 1.0 × 10?6–2.5 × 10?3 and 1.0 × 10?6–2.0 × 10?3 M, respectively, and the detection limits for EP and AC were 5.0 × 10?7 and 4.5 × 10?7 M, respectively.  相似文献   

11.
《Analytical letters》2012,45(14):2309-2321
Abstract

A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at?0.713 V in 0.1 mol l?1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1 × 10?3 mol l?1 to 1 × 10?5 mol l?1. The detection limit was found to be 4.36 × 10?6 mol l?1. This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.  相似文献   

12.
A novel-modified electrode has been developed, by electrodeposition of palladium nanoparticles (PdNps) on polypyroline film-coated (Poly(Pr)) graphite electrode. The modified electrode (PdNps/Poly(Pr)/GE) was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. SEM proved that the palladium nanoparticles were uniform distributed with an average particle diameter of 20–45 nm. A higher catalytic activity was obtained for curcumin oxidation using this new modified electrode (PdNps/Poly(Pr)/GE). The square wave voltammogram of curcumin in pH 2 phosphate buffer exhibited an anodic peak at 0.504 V. This oxidation peak current was found to be linearly related to curcumin concentrations in the ranges of 5.0?×?10?9 to 1.0?×?10?7 M with a detection limit of 1.2?×?10?9 M. This novel-modified electrode showed excellent sensitivity, compared with the existing reports about determination of curcumin.  相似文献   

13.
A novel and simple biosensor based on poly(indoleacetic acid) film-modified electrode (PIAA/CPE) was fabricated by electrochemical polymerization of indoleacetic acid on a carbon paste electrode (CPE) through cyclic voltammetry. The resulting electrode was characterized by scanning electron microscopy, and the electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were studied. It was illustrated that PIAA/CPE had excellent electrochemical catalytic activities toward DA and EP. The anodic peak currents (I pa) were dramatically enhanced by about seven-fold for DA and ten times for EP at PIAA/CPE. Thus, the determinations of DA and EP were carried out using PIAA/CPE successfully. The linear responses were obtained in the range of 3.0?×?10?7~7.0?×?10?4 and 1.0?×?10?6 ~8.0?×?10?4 mol L?1 with the detection limits (3σ) of 1?×?10?7 and 4?×?10?7 mol L?1 corresponding with DA and EP, respectively. Moreover, the cathodic peaks of DA and EP were well-separated with a potential difference about 325 mV in pH 5.3 phosphate-buffered saline, so simultaneous determination of DA and EP was carried out in this paper. Additionally, the interference studies showed that the PIAA/CPE exhibited excellent selectivity in the presence of ascorbic acid (AA). With good selectivity and sensitivity, the present method has been successfully applied to the determination of DA and EP in pharmaceutical samples.  相似文献   

14.
A sensitive and reliable electrochemical method was developed for determination of bisphenol A (BPA) in plastic products using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan (denoted as S-CHIT/ABPE). In the second-order derivative linear sweep voltammetry technique, BPA yielded a very sensitive and well-defined oxidation peak at 842?mV in 0.2?mol?L?1 HCl solution. Owing to its unique structure and extraordinary properties, S-CHIT/ABPE showed higher accumulation efficiency toward BPA compared with bare ABPE, and significantly enhanced the oxidation peak current of BPA. Under the optimum conditions, the oxidation peak current was proportional to the concentration of BPA over the range of 4.0?×?10?8?mol?L?1?~?1.0?× 10?5?mol?L?1. The detection limit (S/N?=?3) was 2.0?×?10?8?mol?L?1. The fabricated S-CHIT/ABPE not only exhibited strong adsorption capacity toward BPA, but also provided remarkable stable and quantitatively reproducible analytical performance. Additionally, this newly-developed method possesses some obvious advantages including high sensitivity, extreme simplicity, rapid response and low cost.  相似文献   

15.
Silicon dioxide nanoparticles modified carbon paste electrode was fabricated and used for electrochemical investigation of tryptophan. Compared with the unmodified electrode, the peak current significantly increased. Experimental conditions for tryptophan determination were optimized. Linear relationship between the peak current and tryptophan concentration was obtained in the range of 1.0 × 10?7?5.0 × 10?6 mol L?1 and 5.0 × 10?6?5.0 × 10?5 mol L?1 with an estimated detection limit of 3.6 × 10?8 mol L?1 (S/N = 3). Tryptophan in pharmaceutical and human serum samples were successfully determined by the proposed method.  相似文献   

16.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

17.
The Cu (II) imprinted polymer glassy carbon electrode (GCE/Cu-IP) was prepared by electropolymerization of pyrrole at GCE in the presence of methyl red as a dopant and then imprinting by Cu2+ ions. This electrode was applied for potentiometric and voltammetric detection of Cu2+ ion. The potentiometric response of the electrode was linear within the Cu2+ concentration range of 3.9 × 10?6 to 5.0 × 10?2 M with a near-Nernstian slope of 29.0 mV decade?1 and a detection limit of 5.0 × 10?7 M. The electrode was also used for preconcentration anodic stripping voltammetry and results exhibited that peak currents for the incorporated copper species were dependent on the metal ion concentration in the range of 1.0 × 10?8 to 1.0 × 10?3 M and detection limit was 6.5 × 10?9 M. Also the selectivity of the prepared electrode was investigated. The imprinted polymer electrode was used for the successful assay of copper in two standard reference material samples.  相似文献   

18.
Graphene nanosheets were directly electrodeposited onto a glassy carbon electrode (GCE) from the electrolyte solution containing graphene oxide (GO); the resulting electrode (ED-GO/GCE) was characterized with scanning electron microscopy. A simple and rapid electrochemical method was developed for the determination of theophylline (TP), based on the excellent properties of ED-GO film. The result indicated that ED-GO film-modified GCE exhibited efficient electrocatalytic oxidation for TP with relatively high sensitivity and stability. The electrochemical behavior of TP at ED-GO/GCE was investigated in detail. Under the optimized conditions, the oxidation peak current was proportional to the TP concentration in the range of 8.0?×?10?7 to 6.0?×?10?5 mol?L?1 with the detection limit of 1.0?×?10?7 mol?L?1 (S/N?=?3). The proposed method was successfully applied to green tea samples with satisfactory results.  相似文献   

19.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

20.
《Analytical letters》2012,45(9):1750-1762
Abstract

The interaction between clozapine (CLZ) as an orally administrated antipsychotic drug with double stranded calf thymus DNA (dsDNA) was investigated at electrode surface using differential pulse voltammetry (DPV). Activated carbon paste electrode (CPE) was modified with dsDNA and used for monitoring the changes of the characteristics peak of CLZ in 0.05 M acetate buffer (pH 4.3). The adsorptive stripping voltammetry on dsDNA‐modified carbon paste electrode (dsDNA‐CPE) was used for determination of very low concentration of CLZ. Under optimal conditions, the oxidation peak current is proportional to CLZ concentration in the range of 7×10?9?1.2×10?6 mol l?1 with a detection limit of 1.5×10?9 mol l?1 for 180 s accumulation time by DPV. The proposed dsDNA‐CPE was successfully used for determination of CLZ in human serum samples with recovery of 97.0±2.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号