首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of expired lansoprazole and rabeprazole on the corrosion protection of carbon steel in phosphoric acid (3.0 ?M) solution were examined by Tafel polarization and electrochemical impedance spectroscopy (EIS). Lansoprazole and rabeprazole concentrations (0.5, 1.0, 5.0 and 10 ?mM) in acid solution were raised, which improved corrosion prevention. Both lansoprazole and rabeprazole as the mixed inhibitors retarded the anodic and cathodic processes, as indicated by polarization data. With the increasing temperature in the range of 25–55 ?°C, the inhibition efficiency drops from 92.9% to 69.3% for lansoprazole and from 94.8% to 74.2% for rabeprazole. The major decrease in the inhibition efficiency with ascending temperature proved the physisorption of the drugs. The activation energies for carbon steel corrosion in H3PO4solution were enhanced from 41.6 ?kJ ?mol?1 to 81.9 ?kJ.mol?1and 85.9 ?kJ ?mol?1 for lansoprazole and rabeprazole, respectively. The influence of temperature on the corrosion process of carbon steel in the acid medium was used to derive the thermodynamic quantities of corrosion. The adsorption of both lansoprazole and rabeprazole on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes that were consistent with the results arising from impedance measurements. The theoretical study of both lansoprazole and rabeprazole was done by a density functional theory (DFT) approach to realize the effects of molecular structure on their inhibitive action. Both lansoprazole and rabeprazole contain a higher EHOMO, a lower ELUMO and a lower energy gap than some inhibitors earlier reported as good corrosion inhibitors in the literature.  相似文献   

2.
A study on the use of the methanol extract of Medicago sativa as a green corrosion inhibitor for 1018 carbon steel in 0.5?M of sulfuric acid has been carried out by using potentiodynamic polarization curves, electrochemical impedance spectroscopy and gravimetric tests. Testing temperatures were 25°C, 40°C and 60°C. Results showed that M. sativa is a good corrosion inhibitor, with its efficiency increasing with its concentration and with time, but decreasing with the temperature. M. sativa forms a passive film on top of the steel with a passive current density and pitting potential values lower than that for uninhibited solution, and remained on the steel for 8–12?h. This film formed by iron ions and heteroatoms present in OH? and amine groups from the extract are adsorbed on the steel and form a protective film on to the steel.  相似文献   

3.
The passive ranges of carbon steel rebar and 3Cr steel rebar in saturated Ca(OH)2‐simulated concrete pore solution with pH 12.6 were determined by means of cyclic voltammetry and potentiodynamic polarization curves. Chronopotentiometry was used to obtain steady‐state conditions for the formation of passive films on rebar samples at different anodic potentials. Electrochemical impedance spectroscopy, Mott–Schottky and X‐ray photoelectron spectrometer curves were employed to compare the formed passive films at different potentials. Additionally, cyclic polarization curves were used to compare the corrosion resistances of formed passive films on the two rebars in saturated Ca(OH)2‐simulated concrete pore solution with different concentration of Cl?. The results show that the passive ranges of the two rebars are all between ?0.15 and +0.6 V, and more stable passive films can be formed on both rebars at the anodic potential of +0.3 V. In the absence of Cl?, the stability and corrosion resistance of the passive film formed on the 3Cr rebar are better than those of CS rebar. The passive film of 3Cr steel has the relatively better pitting corrosion resistance than carbon steel in saturated Ca(OH)2‐simulated concrete pore solution that contains different concentration of Cl?. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) and polystyrene (PS) blend coatings on the corrosion inhibition of stainless steel in a 0.5 M NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. Stainless steel electrodes with mirror finish were coated with P3OT/PS blend by drop-casting technique. In order to study the temperature effect on the function like physical barrier against the corrosive species of P3OT/PS polymeric blend, the coatings were thermally annealed at three different temperatures (55?°C, 80?°C, and 100?°C). The corrosion behavior of P3OT/PS-coated stainless steel was investigated in 0.5 M NaCl at room temperature, by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy. The LPR values indicated that, at 100?°C, P3OT/PS coatings showed a better protection of the 304 stainless steel in 0.5 M NaCl; the corrosion rate diminished in two orders of magnitude with regard to the bare stainless steel. The superficial morphology of the coatings before and after the corrosive environment was researched by atomic force microscopy, optic microscopy, and scanning electronic microscopy. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases, which improved the barrier properties of the coatings. The coating/metal adhesion and the coating thickness were evaluated. The temperature increases the adhesion degree coating/substrate; thus, the coating annealed at 100?°C showed the best adhesion.  相似文献   

5.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

6.
Electrochemical methods were used to study the characteristics of corrosion process for the high-strength low-alloy steel and carbon steel used as a huge oil storage tank in NaHSO3 solution. The polarization curve results show that both steel samples take place in active solution, and the high-strength low-alloy (HSLA) steel has higher i corr value than carbon steel, which is due to the small grain size that provides high density of active sites for preferential attack. The electrochemical impedance spectroscopy (EIS) results make known that the corrosion process presents two stages. In the first 136 h, one-time constant in EIS diagrams can be shown. Both steels have similar corrosion resistance due to the combination effects of the grain size and microstructure. After 240 h of immersion, a complete passive film forms on the specimen surface, and two-time constants can be shown in EIS diagram. The HSLA steel exhibited improved corrosion resistance when compared with the carbon steel, which is due to the effect of the shape Fe3C in microstructure and the deposition of FeSO4 on the electrode surface. The scanning electrode microscopy analyses show that both steels take place in homogenous corrosion, and the carbon steel shows higher surface roughness and many Fe3C residues. XRD results show that both steels have similar phase constitutes of corrosion products.  相似文献   

7.
The inhibition effect of polyphenols extracted from olive mill wastewater (PP) on carbon steel in 1.0 M HCl solution was studied. Inhibition efficiency of PP was carried out by using chemical (weight loss method) and electrochemical techniques [potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)]. The effect of temperature and immersion time on the corrosion behavior of carbon steel in 1.0 M HCl with addition of an extract was also studied. The results show that PP acts as a very good inhibitor, and the inhibition efficiency increases with the concentration of PP and decreases with rising temperature. Polarization curves show that PP behaves as a mixed-type inhibitor in hydrochloric acid. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through an appropriate equivalent circuit model; a constant phase element has been used. EIS shows that charge-transfer resistance increases and the capacitance of double layer decreases with the inhibitor concentration, confirming the adsorption process mechanism. The activation energy as well as other thermodynamic parameters for the inhibition process were calculated. The adsorption of PP obeys the Langmuir adsorption isotherm.  相似文献   

8.
The corrosion behaviours of austenitic stainless steels were investigated by electrochemical methods under plastic deformation with constant strain in the naturally aerated 0.5 M H2SO4 + 0.2 M KCl solution at room temperature. The work addresses the influence of plastic deformation and molybdenum element on the corrosion resistance of austenitic stainless steels in the test solution. Electrochemical impedance spectroscopy presents the decreasing charge transfer resistance (Rt) and polarization resistance (Rp) values with the immersion time for AISI 304 stainless steel under constant strain deformation, and the increasing Rt and Rp values with the immersion time for AISI 316 stainless steel. The analysis of the chemical composition of the corrosion products was carried out by XPS. Molybdenum addition in AISI 316 stainless steel affects significantly the corrosion resistance because of its high ability to form Mo (VI) and MoCl5 insoluble compounds in acid medium. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A chrome‐free conversion coating treatment for magnesium by phytic acid solution was developed. The immersion experiments were used for evaluating the effects of the processing parameters (such as conversion temperature and time, concentration and pH value of phytic acid solution) on the corrosion resistance of the phytic acid conversion coating. The morphologies and compositions of the coatings were determined by SEM and EDS respectively. The experimental results indicated that the corrosion resistance of the conversion coating formed in the solution containing 0.5% phytic acid at 25°C and pH=4 for 30 min was higher than that of natural oxide, and the conversion coating formed on the surface of magnesium was of multilayer mainly consisting of Mg, C, O and P. The thicknesses of the conversion coatings were approximately 1.0–15 µm and the conversion coatings presented obvious network‐like cracks. The electrochemical potentiodynamic polarization experiment indicated that the free corrosion potential of the magnesium with phytic acid conversion coating was increased, and its corrosion current and corrosion rate declined in 3.5% NaCl solution. Phytic acid conversion coating could improve the electrochemical property of magnesium and provide effective protection, which can improve the corrosion resistance of magnesium.  相似文献   

10.
The effect of the NO3? anion on the corrosion of carbon steel in a solution of 0.1M NH4Cl (pH 5.5) was studied by galvanostatic polarization and Mössbauer spectrometry. The anion has an inhibiting effect by decreasing the expansion rate of generalized corrosion of carbon steel in a solution of 0.1M NH4Cl. Mössbauer spectroscopy shows that a superficial compound is formed on the electrode surface as a result of corrosion, presenting no magnetic ordering. Its parameters show the initial stage of corrosion. We assume that at this stage the main corrosion product is a mixture of ferrihydrite Fe(III) and FeOOH (α and/or γ).  相似文献   

11.
Siloxane-polymethyl methacrylate hybrid films were deposited on carbon steel substrates by dip-coating from a sol prepared by acid-catalyzed hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyl-trimethoxysilane (MPTS), followed by radical polymerization of methyl methacrylate (MMA). Structural properties of the hybrids were studied using 29Si and 13C nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), as a function of the MMA/MPTS ratio, which ranged between 2 and 10. The efficiency of corrosion protection of hybrid-coated carbon steel was investigated by XPS, potentiodynamic polarization curves and electrochemical impedance spectroscopy after immersion of the material in acidic and neutral saline aqueous solution. The NMR and TGA results indicate a high degree of polycondensation (84%) and elevated thermal stability of 410?°C for the hybrid film with a MMA/MPTS ratio of 8, exhibiting also and excellent adhesion to the substrate. The XPS analysis confirmed the variation of the MMA phase in the hybrid, and showed that no corrosion-induced changes had occurred after 18?days immersion of the coated steel in 3.5% NaCl solution. Potentiodynamic polarization curves have shown that the hybrid coating prepared using a TEOS/MPTS ratio of 8 yielded the best anti-corrosion performance. It acts as a very efficient corrosion barrier, increasing the total impedance by almost 6 orders of magnitude and reducing the current densities by 4 orders of magnitude, compared to the bare electrode. The obtained results are discussed based on the correlation of structural information with impedance data presented for both electrolytes in the form of electrical equivalent circuits.  相似文献   

12.
Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol–gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L?1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serum proteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in protein-containing solutions.  相似文献   

13.
The effects of expired bupropion on the corrosion protection of carbon steel in hydrochloric acid (1.0 M) and sulfuric acid (0.5 M) solutions were examined by Fourier transform infrared (FTIR) spectroscopy, Tafel polarization and electrochemical impedance spectroscopy (EIS). Bupropion concentrations in both acid solutions were raised, which improved corrosion prevention. Bupropion was a mixed inhibitor because it retarded the anodic and cathodic processes, as indicated by polarization data. The inhibition efficiency decreased with the increasing temperature from 25 to 55 °C. In the presence of bupropion, the activation energies of corrosion in both acid solutions increased. The thermodynamic quantities were deduced from the influence of temperature on the corrosion process of carbon steel in both acid media. Bupropion adsorption on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes consistent with the results arising from impedance measurements. FTIR spectroscopy showed the active sites of bupropion molecule during adsorption on the alloy surface. The theoretical study and molecular dynamics simulation of bupropion was done by a density functional theory (DFT) approach to realize the effects of molecular structure on the inhibitive action of bupropion.  相似文献   

14.
《印度化学会志》2023,100(4):100966
In the present study, tribological and corrosion behaviour of electroless Ni–B–W (ENB-W) coatings prepared from stabilizer-free baths and deposited on AISI 1040 steel substrates were examined. Three distinct coating bath temperatures (85 °C, 90 °C, and 95 °C) were varied for coating deposition. The coatings showed nodular morphology. Thermogravimetric study of ENB-W coatings revealed improved thermal stability attained at 95 °C bath temperature. The microhardness of ENB-W coating was 645, 690, and 720 HV100 at bath temperatures of 85 °C, 90 °C, and 95 °C respectively. The inclusion of W to Ni–B coating enhanced the hardness by ∼150 HV100. On a pin-on-disc tribometer, wear test was conducted. The precipitation of Ni (111) and its borides occurred post sliding wear at high temperatures (300 °C). Ni (111) crystallite size decreased because of high temperature sliding wear at 300 °C with an increase in coating bath temperature. With a reduction in crystallite size at high temperatures, both wear rate and COF decreases. The scratch hardness and first critical load of failure of the coatings was determined using a scratch tester. Using potentiodynamic polarization, corrosion resistance of ENB-W coatings in 3.5% NaCl was investigated. ENB-W coatings could provide shielding to AISI 1040 steel from corrosion. Though the corrosion resistance is poor with respect to lead stabilized coatings.  相似文献   

15.
Two types of electroless Ni–W–P coatings: nanocrystalline with low P and amorphous with higher P content are investigated. Scanning probe microscopy is applied to study their morphology. Textured nanocrystalline coatings consist of coarse pyramids built of nanometer thick lamellas. The surface morphology of amorphous coatings is much finer and uniform. Nanohardness of all coatings depends on W content. Microhardness is increasing during the heat treatment up to 350 °C due to nickel phosphide precipitation affected by tungsten also. The wear resistance of nanocrystalline Ni–W–P coatings is much higher than that of amorphous in spite of the similar tungsten content in both. Lower corrosion resistance of amorphous Ni–W–P coatings is found by weight loss method during long-term immersion in 5 % NaCl. Electrochemical tests by potentiodynamic polarization curves in two model corrosion media—solutions of 0.5 M H2SO4 and 5 % NaCl—are performed. The corrosion of bi-layered Ni–W–P/Ni–P and Ni–W–P/Ni–Cu–P deposits on mild steel is also investigated. The results prove that an electroless Ni–W–P coating on mild steel extremely improves its mechanical and corrosion behavior. It is demonstrated that in addition to deposit’s structure and composition, the distribution and chemical state of alloy ingredients are also responsible for its properties.  相似文献   

16.
The fabrication of activated carbon dispersed polybenzoxazine (BXP) composite through a single step melt condensation technique is reported. Employing green strategy, activated carbon (AC) was obtained from various types of worn-out plastics such as computer keyboard, sponge, electrical switches, and automobile tyres. Structural features of all the polymeric composites were explored using Fourier transform infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Analysis (EDAX). Thermal stability and hardness of the composites was analyzed by recording thermogravimetric analysis (TGA) and Rockwell hardness measurements. The results of thermal studies revealed that AC–BXP composites show higher thermal stability (301.98°C) than BXP (220.71°C). Rockwell hardness study (RHN) for ACWCKB@BXP is 71 whereas pristine BXP showed only 20. The corrosion protection ability of coated steel was examined through potentiodynamic polarization and electrochemical impedance spectroscopy analysis. From the Tafel plot, more shift in Ecorr value (from −0.6286 to −0.5065 V) towards positive side confirms its corrosion protection ability. Furthermore, the Icorr, the corrosion rate and the corrosion protection efficiency of the ACWTYR@BXP composite are 0.83 × 10−6 A/cm2, 0.0098 mm/year, and 99.54%, respectively, which inhibit the rate of corrosion to a greater extent in 3.5% NaCl solution. The current study applies principles of green chemistry like minimum number of synthesis steps, non-usage of solvents and simply adoptable coating procedure.  相似文献   

17.
The corrosion inhibition efficiency of 3-acetylpyridine-semicarbazide (3APSC) on carbon steel (CS) in 1.0 M HCl solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The results show that inhibition efficiency on metal increases with the inhibitor concentration. 3APSC exhibited marked inhibition towards carbon steel in HCl medium even at low concentrations. The adsorption of inhibitor on the surfaces of the corroding metal obeys the Langmiur isotherm and thermodynamic parameters (K ads, ?G ads 0 ) were calculated. Activation parameters of the corrosion process (E a, ?H* and ?S*) were also calculated from the corrosion rates. Polarization studies revealed that 3APSC act as a mixed-type inhibitor. Surface analysis of the metal specimens was performed by scanning electron microscopy.  相似文献   

18.
Potentiodynamic sweep and electrochemical impedance spectroscopy measurements were applied to investigate the effects of both temperature and acetic acid (HAc) on the anodic and cathodic reactions in CO2 corrosion of P110 steel in 3.5% NaCl solution. The temperatures were controlled at 30 and 60 °C. The concentrations of HAc were controlled at 0, 1000, 3000 and 5000 ppm. In this work, the corrosion parameters of polarization curves, such as corrosion potential (Ecorr), corrosion current density (icorr), and anodic and cathodic branch slopes (ba and bc), are presented and discussed in detail. In addition, the equivalent circuit models and ZsimpWin software were utilized to discuss the Nyquist plots. The plots showed that the Ecorr values shifted in the positive direction as the HAc concentration increased. The icorr values increased with the increase in HAc concentration, indicating that HAc could accelerate the corrosion. The impedance spectra measured at 30 and 60 °C have different time constants and characterization. The coverage fraction θ and the thickness L of corrosion film are two most important controlled variables that influence and control the CO2 corrosion mechanisms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Aminophylline (AMF) was studied as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution using electrochemical measurements associated with UV–Vis spectrophotometry and optical microscopy. Simultaneous thermogravimetry/derivative thermogravimetry and differential scanning calorimetry analysis was performed in order to determine the temperature range in which AMF is an effective inhibitor, without the decomposition risk that could change the inhibition mechanism. Thermal behaviour restricts AMF application as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution at temperatures ≤45 °C where there are no significant modifications of the adsorption mechanism. According to the results of electrochemical measurements, in association with UV–Vis spectrophotometry and optical microscopy techniques, AMF is a mixed-type inhibitor for carbon steel corrosion in 1.0 mol L?1 HCl solution, simultaneously suppressing the anodic and cathodic processes and acting via spontaneous physisorption on the metal surfaces.  相似文献   

20.
The usefulness of aniline formaldehyde (AF), a modern water-soluble composite in 0.5 ?N hydrochloric acid as inhibitor of corrosion for mild steel, has been studied using weight reduction method, test of electrochemical impedance and potentiodynamic polarization methods. According to the findings by weight loss methods, 12ppm of AF co-polymer at room temperature i.e. about 35° ?± ?1°C for 3h duration shows best performance on metal surface and exhibit 93.44% Inhibitor efficiency. The above said results has also being reviled from other examination methods, which shows that the AF follows the Langmuir isotherm, as well as the adsorption properties of the sampling supports the results as maximum IE of 95.05%, using EIS. The tafel and linear polarization results of maximum IE was found to be 94.81% and 94.96% respectively which was well aligned with an atomic force microscope (AFM) for surface morphology and found AF to be best suited corrosion inhibitor showing mixed type of nature, at defined parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号