首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

2.
《Analytical letters》2012,45(3):585-600
Abstract

The intensity of the radiation emitted by humic acid (HA) in the presence of SO5 2? in basic medium was used to determine HA in the range up to 20.0 mg l?1. The detection limit was 0.24 mg l?1. The addition to the sample of 50 mg l?1 of Co(II) or Mn(II), as EDTA complexes or chloride salts, enhanced the radiation emission as a result of the formation of strong oxidant radicals such as SO5 ??, SO4 ??, and HO?. In the presence of these metal ions, the oxidation of HA and the catalytic decomposition of SO5 2? occur simultaneously. Low concentration of HA in natural waters can be detected. HA was replaced by some model organic compounds. The marked chemiluminescent (CL) signals followed the order: phloroglucinol>fulvic acid>humic acid>resorcinol>pyrogallol>cathecol>hydroquinone.  相似文献   

3.
A combination of azo and acylamide ligands is used in the preparation of metal–organic frameworks. Light response research reveals that under UV–vis irradiation, the CO2 adsorption of 1 declines as much as 21.4%. 1 exhibits excellent CO2 adsorption selectivity over CH4, O2, CO, and N2 gasses with IAST selectivity of 21–580 at 293 K. This MOF also has promising potential in separation of xylene isomers in the liquid phase with the adsorption of p-xylene of 265.15, o-xylene of 101.25 and m-xylene of 0 mg g?1, respectively.  相似文献   

4.
Porous copolymers of divinylbenzene (DVB) and acrylic acid (AA) having DVB:AA ratios of 6:4, 8:2 and 9:1 were prepared following a distillation-precipitation method, using toluene as the porogenic agent. The materials thus obtained, which showed specific surface area in the range of 380–600 m2 g?1 and pore volume in the range of 0.14–0.18 cm3 g?1, were investigated as possible adsorbents for CO2 capture from the flue gas of coal-fired power stations. For that purpose, the isosteric heat of adsorption (and CO2 adsorption capacity) was analysed from N2 and CO2 adsorption equilibrium isotherms obtained over a temperature range. For CO2, q st resulted to be in the range of 27–31 kJ mol?1 (the highest value corresponding to the 6:4 sample), while for N2 a value of q st ≈ 12 kJ mol?1 was obtained. Equilibrium adsorption capacity for CO2 (at ambient temperature and pressure) showed the value of about 1.35 mmol g?1. These results are discussed in the broader context of corresponding literature data for CO2 capture using protonic zeolites.  相似文献   

5.
The present study described an improved and reproducible in vitro regeneration system for Terminalia arjuna using nodal segment explants obtained from a mature plant. Shoot tips excised from in vitro proliferated shoots were encapsulated in 3 % sodium alginate and 100 mM CaCl2?2H2O for the development of synthetic seeds which may be applicable in short-term storage and germplasm exchange of elite genotype. Shoot multiplication was significantly influenced by a number of factors, namely types and concentrations of plant growth regulators, medium composition, repeated transfer of mother explants, subculturing of in vitro regenerated shoot clumps, agar concentrations, and temperature. Maximum numbers of shoots (16.50?±?3.67) were observed on modified Murashige and Skoog (MMS) medium containing 0.5 mg l?1 of benzylaminopurine (BAP) and 0.1 mg l?1 of naphthalene acetic acid (NAA). To shortening the regeneration pathway, rooting of micropropagated shoots under in vitro condition was excluded and an experiment on ex vitro rooting was conducted and it was observed that the highest percentage of shoots rooted ex vitro when treated with indole-3-butyric acid (IBA, 250 mg l?1)?+?2-naphthoxy acetic acid (NOA, 250 mg l?1) for 5 min. The well-developed ex vitro rooted shoots were acclimatized successfully in soilrite under greenhouse conditions with 80 % survival of plants. Randomly amplified polymorphic DNA (RAPD) analysis confirmed that all the regenerated plants were genetically identical to the mother plant, suggesting the absence of detectable genetic variation in the regenerated plantlets. To the best of our knowledge, this is the first report on synthetic seed production as well as ex vitro rooting and genetic fidelity assessment of micropropagated shoots of T. arjuna.  相似文献   

6.
The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4·7H2O (25 mg l?1) increased erythritol production by Y. lipolytica by 14.5 %. In the bioreactor culture with manganese ion addition, 47.1 g l?1 of erythritol was produced from 100.0 g l?1 of glycerol, which corresponded to volumetric productivity of 0.87 g l?1 h?1. The addition of Mn2+ enhanced the intracellular activity of erythrose reductase up to 24.9 U g?1 of dry weight of biomass (DW), hence, about 1.3 times more than in the control.  相似文献   

7.
The inhibition behavior of 6-methyl-4,5-dihydropyridazin-3(2H)-one (MDP) on corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. The results indicated that the corrosion inhibition efficiency depends on concentration, immersion time, solution temperature, and the nature of the acidic solutions. It is also noted that MDP is at its the most efficient in 1 M HCl and least in 0.5 M H2SO4. The effect is more pronounced with MDP concentration. It is found that the inhibition efficiency attains 98 % at 5 × 10?3 M in 1 M HCl and 75 % at 5 × 10?2 in 0.5 M H2SO4. Polarization measurements showed that the MDP acts as a mixed inhibitor. EIS diagrams showed that the adsorption of MDP increases the transfer resistance and decreases the capacitance of the interface metal/solution. From the temperature studies, the activation energies in the presence of MDP were found to be superior to those in uninhibited medium. Finally, a mechanism for the adsorption of MDP was proposed and discussed.  相似文献   

8.
The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag+, Hg+2, Co+2, Cu+2) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l?1 of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g?1). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 %?v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g?1) with respect to the control (3.3 mg g?1). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l?1 in 25 days) was found to be the highest with cholesterol (50 mg l?1) addition as an indirect precursor in the medium.  相似文献   

9.
The chemical and electrochemical properties of technetium metal were studied in 1–6 M HX and in 1 M NaX (pH 1 and 2.5), X = Cl, NO3. The chemical dissolution rates of Tc metal were higher in HNO3 than in HCl (i.e. 8.63 × 10?5 mol cm?2 h?1 in 6 M HNO3 versus 2.05 × 10?9 mol cm?2 h?1 in 6 M HCl). The electrochemical dissolution rates in HNO3 and HCl were similar and mainly depended on the electrochemical potential and the acid concentration. The optimum dissolution of Tc metal was obtained in 1 M HNO3 at 1 V/AgAgCl (1.70 × 10?3 mol cm?2 h?1). The dissolution potentials of Tc metal in nitric acid were in the range of 0.596–0.832 V/AgAgCl. Comparison of Tc behavior with Mo and Ru indicated that in HNO3, the dissolution rate followed the order: Mo > Tc > Ru, and for dissolution potential the order: E diss(Ru) > E diss(Tc) > E diss(Mo). The corrosion products of Tc metal were analyzed in HCl solution by UV–Visible spectroscopy and showed the presence of TcO4 ?. The surface of the electrode was characterized by microscopic techniques; it indicated that Tc metal preferentially corroded at the scratches formed during the polishing and no oxide layer was observed.  相似文献   

10.
Water-insoluble β-cyclodextrin polymer (β-CDP) crosslinked by citric acid was obtained with a yield of 65% through an environment friendly synthesis procedure. FT-IR spectra disclosed that the hydroxyl groups of β-CD had reacted and condensated with the carboxyl groups of citric acid, and at the same time the structural characteristics of β-CD were essentially maintained in β-CDP. The β-CDP exhibited notable adsorption capability toward phenol (q max = 13.8 mg g?1) and especially large adsorption capability toward methylene blue (q max = 105 mg g?1). The concentration of methylene blue in water could be reduced to 0.11 mg L?1 by the β-CDP, indicating the excellent adsorption sensitivity of β-CDP toward methylene blue. The adsorption results disclosed that the interior cavity and inclusion property of β-CD were maintained in the synthesized β-CDP.  相似文献   

11.
《Analytical letters》2012,45(14):2683-2692
Abstract

DNA was immobilized onto a carbon nanotube surface through cyclic voltammetry, in which paste electrode (PE) was subjected to lead and copper trace ion analysis. Optimized conditions for square‐wave stripping voltammetry were then searched. The results indicated three other linear working ranges—3–21 mg l?1, 2–16 µg l?1, and 3–17 ng l?1 Pb(II) Cu(II)—within an accumulation time of 190 s in 0.1‐M ammonium phosphate electrolyte solutions of pH 10.0. At the optimized conditions, the detection limit (S/N) was pegged at 0.4 ng l?1 (1.93×10?12 M Pb(II) and 6.29×10?12 M Cu(II)). And the relative standard deviation at 10 mg l?1 Pb(II) and Cu(II) was a 0.074 and 0.069% precision, in 15 measurements. The method can be applied to assays of fish tissue.  相似文献   

12.
Fine powder of Typha latifolia L. root was used for adsorption of copper and zinc ions from buffered and nonbuffered aqueous solutions. The adsorption reached equilibrium in 60 min. During this time, more than 90 % of the adsorption process was completed. The effect of initial pH, initial concentration of metal ion, and contact time was investigated in a batch system at room temperature. The optimum adsorption performance was observed at pH 5.00 and 4.25 for nonbuffered solutions of Cu(II) and Zn(II), respectively, while for buffered solutions it occurred at pH 6.00. The total metal uptake decreased on application of ammonium acetate buffer, from 37.35 to 17.00 mg g?1 and 28.80 to 9.90 mg g?1 for Cu(II) and Zn(II) solutions, respectively, with 100 mg L?1 initial concentration. The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were used to describe the adsorption kinetics. The experimental data followed the pseudo-second-order kinetic model. The biosorption equilibrium was well described by Langmuir and Freundlich isotherm models.  相似文献   

13.
Given the great interest in the CO2 removal and decreasing their impact on the environment, in this work, a calorimetric study of CO2 adsorption on different activated carbons was performed. For this purpose, we used two methodologies for the determination heat of CO2 adsorption: determination of CO2 isotherms at different temperatures and adsorption calorimetry. The heats determined by these two techniques were compared. In this regard, carbonaceous materials of granular and monolithic types were prepared, characterized, and functionalized for carbon dioxide adsorption. As precursor material, African palm stones that were activated with H3PO4 and CaCl2 at different concentrations was used. The obtained materials were functionalized in gas phase with NH3 and liquid phase with NH4OH, with the intention to incorporate the surface basic groups (amines or nitrogen groups) and subsequently were studied for CO2 adsorption at 273 K and atmospheric pressure. For characterization of these materials, the following techniques are used: N2 adsorption at 77 K and immersion calorimetry in different solvents. The experimental results show the obtaining of micropores and mesoporous (moderately) materials, with surface area between 430 and 1,425 m2 g?1 and pore volumes between 0.17 and 0.53 cm3 g?1. It was determined that there is a difference between the heats of CO2 adsorption obtained by the techniques employed. This deviation between the values corresponds to the methodological difference between the two experiments. In this work, we obtained a maximum adsorption capacity of CO2, which is greater than 334 mg CO2 g?1 at 273 K and 1 bar in carbon materials with moderate surface area and pores volume.  相似文献   

14.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

15.
The total metal concentration and bioaccessible concentration of Cr, Mn, Fe, Cu, Zn, Se in Momordica charantia, Asparagus racemosus, Terminalia arjuna and Syzyzium cumini were measured by instrumental neutron activation analysis and by inductively coupled plasma mass spectrometry analysis (ICP-MS). The bioaccessible concentrations were determined in the gastrointestinal digest obtained after treating dried powdered samples sequentially in gastric and intestinal fluid of porcine origin at physiological conditions. The bioaccessible concentration of Fe was in the range of 58–67 mg kg?1, Mn was 10.2–14.6 mg kg?1, Cu was 3.7–4.8 mg kg?1 and Zn was 10.6–18.4 mg kg?1, were within the safety limits set for vegetable food stuff set by Joint FAO/WHO. The bioaccessibility of Zn, an essential element, was high (40–50 %) in M. charantia and in S. cumini. In addition, the total metal contents and bioaccessible concentration of Ni, Se, Cd and Pb in these samples were measured by ICP-MS. The total Cd content in S. cumini (2.6 ± 0.2 mg kg?1) and its bioaccessible concentration (0.6 mg kg?1) were strikingly high as compared to the other samples. Though total Hg contents were determined by ICP-MS, but their bioaccessible concentrations were below the detection limit (0.036 mg kg?1).  相似文献   

16.
Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m3CH4 kgCODvinasse ?1. The highest productivity of Chlorella vulgaris biomass (70 mg l?1 day?1) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l?1 day?1. Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.  相似文献   

17.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

18.
Methanolic extracts from in vitro grown Scutellaria lateriflora shoots cultured on five Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) under different light conditions (monochromatic light, white light and no light) were analysed by HPLC for three groups of metabolites: flavonoids (26 compounds), phenolic acids and their precursors (19+2) and phenylethanoid glycosides (2). The analyses revealed the presence of baicalein, baicalin, wogonin, wogonoside, 3,4-dihydroxyphenylacetic acid and verbascoside. There was clear evidence of the influence of plant growth regulators and light conditions on the accumulation of the analysed groups of secondary metabolites. The amounts of the compounds changed within a wide range—for the total flavonoid content, 30.2-fold (max. 1204.3 mg·100 g?1 dry weight (DW)); for 3,4-dihydroxyphenylacetic acid, 5.5-fold (max. 33.56 mg·100 g?1 DW); and for verbascoside, 1.5-fold (169.15 max. mg·100 g?1 DW). The best medium for the production of most of the compounds was the Murashige and Skoog variant with 1 mg l?1 BAP and 1 mg l?1 NAA. For verbascoside, the best ‘productive’ medium was the MS variant supplemented with 0.5 mg l?1 BAP and 2 mg l?1 NAA. The accumulation of the metabolites was stimulated to the greatest extent by blue light, under which the extracts were found to contain the highest total amount of flavonoids and the highest amounts of flavonoid glucuronides, baicalin and wogonoside, as well as of verbascoside. Their amounts were, respectively, 1.54-, 1.49-, 2.05- and 1.86-fold higher than under the control white light.  相似文献   

19.
Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l?1) and naphthalene acetic acid (NAA; 1.5 mg l?1). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5–2.0 mg l?1). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l?1 NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l?1 NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l?1 NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.  相似文献   

20.
Present study describes the adsorption of carbofuran (CF) from aqueous solutions using p-tetranitrocalix[4]arene based modified silica through batch and column methods. Various parameters were optimized including initial pesticide concentrations (5 mg L?1), pH (2–10), contact time (60 min) and adsorbent dosage (30 mg). Modified silica was characterized by FT-IR and scanning electron microscope. The adsorption was further explained by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. Moreover, adsorption kinetics and adsorption thermodynamics were also investigated. Adsorption in dynamic mode was evaluated by breakthrough volumes and the Thomas model, applying batch conditions using 30 mg of modified silica at pH 5. It has been noticed that CF removal efficiency of modified silica was 98 % as compared to bare silica (48 %). Adsorption of CF on modified silica was found to be multilayer and physical in nature. Consequently, adsorption obeys pseudo-second-order kinetic equation following external mass transfer diffusion process as the rate-limiting step. Thermodynamic parameter (ΔG, ΔS, ΔH) values suggest that the adsorption of CF is spontaneous and exothermic in nature. Thomas model rate constant k TH (cm3 mg?1 min?1) and maximum solid phase concentration (q o mg g?1) was found to be 0.52 and 12.3, respectively, in dynamic mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号