首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional (2D) (13)C-(13)C NMR correlation spectra were collected on (13)C-enriched dragline silk fibers produced from Nephila clavipes spiders. The 2D NMR spectra were acquired under fast magic-angle spinning (MAS) and dipolar-assisted rotational resonance (DARR) recoupling to enhance magnetization transfer between (13)C spins. Spectra obtained with short (150 ms) recoupling periods were utilized to extract distinct chemical shifts for all carbon resonances of each labeled amino acid in the silk spectra, resulting in a complete resonance assignment. The NMR results presented here permit extraction of the precise chemical shift of the carbonyl environment for each (13)C-labeled amino acid in spider silk for the first time. Spectra collected with longer recoupling periods (1 s) were implemented to detect intermolecular magnetization exchange between neighboring amino acids. This information is used to ascribe NMR resonances to the specific repetitive amino acid motifs prevalent in spider silk proteins. These results indicate that glycine and alanine are both present in two distinct structural environments: a disordered 3(1)-helical conformation and an ordered beta-sheet structure. The former can be ascribed to the Gly-Gly-Ala motif while the latter is assigned to the poly(Ala) and poly(Gly-Ala) domains.  相似文献   

2.
The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples: one with 100% parallel beta-sheet structure and the other with 100% antiparallel beta-sheet structure. All (13)C resonances of the tripeptides could be assigned by a comparison of the methyl (13)C resonances of Ala(3) with different [3-(13)C]Ala labeling schemes and also by a series of RFDR (radio frequency driven recoupling) spectra observed by changing mixing times. Two (13)C resonances observed for each Ala residue could be assigned to two nonequivalent molecules per unit cell. Differences in the (13)C chemical shifts and (13)C spin-lattice relaxation times (T(1)) were observed between the two beta-sheet structures. Especially, about 3 times longer T(1) values were obtained for parallel beta-sheet structure as compared to those of antiparallel beta-sheet structure, which could be explicable by the difference in the hydrogen-bond networks of both structures. This very large difference in T(1) becomes a good measure to differentiate between parallel or antiparallel beta-sheet structures. These differences in the NMR parameters found for the tripeptides may be applied to assign the parallel and antiparallel beta-sheet (13)C resonances in the asymmetric and broad methyl spectra of [3-(13)C]Ala silk protein fiber of a wild silkworm, Samia cynthia ricini.  相似文献   

3.
The addition of water to spider dragline silk results in fiber contraction to 50% its initial length and significant changes to the mechanical properties of the silk. This event has been termed supercontraction. A decrease in strength and increase in elasticity have been reported when the silk is in contact with water. Two-dimensional wide-line separation (WISE) nuclear magnetic resonance (NMR) is implemented to correlate (13)C chemical shifts with mobility by observing the corresponding (1)H line widths and line shapes in water-saturated spider dragline silk. The WISE NMR spectrum of the native silk exhibits (1)H line widths that are approximately 40 kHz for all carbon environments characteristic of a rigid organic system. In contrast, the water-saturated case displays a component of the (1)H line that is narrowed to approximately 5 kHz for the glycine C(alpha) and a newly resolved alanine helical environment while the alanine C(beta) corresponding to the beta-sheet conformation remains broad. These results indicate that water permeates the amorphous, glycine-rich matrix and not the crystalline, polyalanine beta-sheets. A delay time is added to the WISE NMR pulse sequence to monitor spin diffusion between the amorphous, mobile region and the crystalline domains. The time required for spin diffusion to reach spatial equilibrium is related to the length scale of the polyalanine crystallites. This technique is employed to measure crystalline domain sizes on the nanometer length scale in water-solvated spider dragline silk. These results provide further insight into the structure of spider silk and mechanism of supercontraction.  相似文献   

4.
Dragline silk from the spider, Nephila clavipes, was characterized by thermal analysis (TGA, DSC, DMA), computational modeling, scanning electron microscopy and by quasi-static as well as high rates of strain. Thermal stability to about 230°C was observed by TGA, two transitions by DMA, ?75°C, representative of localized motion in the amorphous domain, and a main chain motion associated with partial melt at 210°C. Tensile tests indicated average initial modulus, ultimate tensile strength and ultimate tensile strain of 22 GPa, 1.1 GPa and 9%, respectively. The corresponding properties of the best fibers tested were 60 GPa, 2.9 GPa and 11%, respectively. High strain rates (>50,000%/sec) indicated similar mechanical properties to the average values indicated above. Microscopy showed compressive and tensile strains to failure of 34%. Computational modeling yielded a crystal modulus of 200 GPa.  相似文献   

5.
Spider silk is considered as the basis of a new family of high performance fibers that would reproduce the excellent mechanical properties of the silk, in particular its extreme toughness. However, it has been observed that the mechanical properties of spider silk are severely influenced by humid environments that give rise to significant decreases in its length and elastic modulus. The change from stiff to compliant tensile properties is associated with the glass transition from a glassy to a rubbery state; here, we have found that it depends on both temperature and relative humidity. The glass transition was identified at different temperatures and relative humidities by monitoring the variation of the elastic modulus and observing the emergence of supercontraction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 994–999, 2006  相似文献   

6.
The nuclear poly(A) binding protein PABPN1 possesses a natural 10 alanine stretch that can be extended to 17 Ala by codon expansion. The expansions are associated with the disease oculopharyngeal muscular dystrophy (OPMD), which is characterized histopathologically by intranuclear fibrillar deposits. Here, we have studied the Ala extended fibrillar N-terminal fragment of PABPN1, (N-(+7)Ala), comprising 152 amino acids. At natural abundance, cross-polarized 13C MAS NMR spectra are dominated by the three Ala signals with characteristic beta-sheet chemical shifts. In contrast, directly polarized 13C MAS spectra show a multitude of narrow lines, suggesting a large portion of highly mobile sites. Proteolytic cleavage of the protein combined with MALDI-TOF mass spectrometry revealed a protease-resistant peptide encompassing residues 13/14 to 50-52 with the poly-Ala stretch in the center. Measurements of the 1H-13Calpha dipolar couplings of 13C/15N-labeled N-(+7)Ala revealed high order parameters of 0.77 for the poly-Ala stretch of the fibril, while the majority of the residues of N-(+7)Ala exhibited very low order parameters between 0.06 and 0.15. Only some Gly residues that are flanking the Ala-rich region had significant order parameters of 0.47. Thus, site-specific dynamic mapping represents a useful tool to identify the topology of fibrillar proteins.  相似文献   

7.
The polymerization of the microtubule-associated protein tau into paired helical filaments (PHFs) represents one of the hallmarks of Alzheimer's disease. We employed solid-state nuclear magnetic resonance (NMR) to investigate the structure and dynamics of PHFs formed in vitro by the three-repeat-domain (K19) of protein tau, representing the core of Alzheimer PHFs. While N and C termini of tau monomers in PHFs are highly dynamic and solvent-exposed, the rigid segment consists of three major beta-strands. Combination of through-bond and through-space ssNMR transfer methods with water-edited ((15)N, (13)C) and ((13)C, (13)C) correlation experiments suggests the existence of a fibril core that is largely built by repeat unit R3, flanked by surface-exposed units R1 and R4. Solid-state NMR, circular dichroism, and the fibrillization behavior of a K19 mutant furthermore indicate that electrostatic interactions play a central role in stabilizing the K19 PHFs.  相似文献   

8.
Separation of thorium, uranium and plutonium by basic tertiary amine, Alamine-336 and neutral organophosphoric extractant tri-n-octylphosphinoxide in xylene and cyclohexane solutions has been investigated. According to results obtained, Alamine-336 was chosen for the extraction of atmospheric precipitation samples. Separation process with tri-n-octylphosphinoxide based extraction can lead to higher chemical yields, but according to our results reproducibility is worse due to incomplete back-extraction of elements from organic phase. Analysis of simulated 1001 sample concentrate has shown significant effect of Ca2+, Fe3+ and Mn2+ ions concentration.  相似文献   

9.
Summary The stable conformations of N and C protected amino acids of the type: HCONH-CHR-CONH2 of glycine,l-alanine andl-valine have been obtained by fully optimizedab-initio computations with a 3–21G basis set. An original procedure has been devised to extract the side-chain/backbone interaction energy and the backbone and side-chain distortion energies. This enables us to analyze the stabilization/destabilization effects introduced by the side-chain in terms of electrostatic, induction and steric hindrance contributions.Dedicated to Dr. A. Pullman  相似文献   

10.
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.  相似文献   

11.
We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements.  相似文献   

12.
A microcoil probehead for solid-state NMR was developed with a two-channel radio-frequency circuit, and 13C observation with a proton-decoupling probehead was performed to obtain information on the distribution of the orientation of silk fibroin molecules in the fiber. The coil (1 mm (diameter) x 5 mm (length)) of the probehead was placed at the angles 90 degrees and 30 degrees , relative to the static magnetic field. Only 70 mug of [1-13C]Gly silk fibroin fiber was used in a magnet of 9.4 T (400 MHz for proton channel).  相似文献   

13.
The 1H NMR spectra of the antibiotic cycloheximide in CDCl3 and CD3OD have been assigned. Analyses of coupling constants and difference NOE spectra showed different conformations in these two solvents, due to changeover between intra- and inter-molecular hydrogen bonding. The twist boat cyclohexanone found in the solid state was not detected in solution. The results are compared with the solution and solid-state conformations of the antitumour agent sesbanimide A.  相似文献   

14.
Selective replacement of the amorphous peptide domain of a spider silk with poly(ethylene glycol) gave N. clavipes silk-inspired polymers having similar solid-state structures and very good mechanical properties. The tendency of poly(alanine) having appropriate chain length to form beta-sheets and the facility with which the beta-sheets self-assemble have been retained in the polymers. Solid-state (13)C NMR, solid-state FTIR, X-ray diffraction, and AFM studies showed that the polymers formed predominantly antiparallel beta-sheets that self-assembled into discrete nanostructures. The longer the peptide segment was, the greater was the tendency to self-assemble into antiparallel beta-sheet aggregates. AFM revealed that the morphology of the polymers was a microphase-separated architecture that contained irregularly shaped 100-200 nm poly(alanine) nanodomains interspersed within the PEG phase. The results suggest that the poly(alanine) domain influences the solid-state properties of spider silk through beta-sheet self-assembly into temporary cross-links. The results further demonstrate that by selectively replacing certain segments of a naturally occurring biopolymer with a judiciously selected nonnative segment while, at the same time, retaining other segments known to be critical for the essential properties of the native biopolymer, a synthetic polymer with similar properties and function can be obtained.  相似文献   

15.
A solid-state NMR technique is described for establishing stereochemistry using the natural product terrein as a model compound. This method involves comparison of experimental (13)C tensor principal values with ab initio computed values for all possible computer-generated stereoisomers. In terrein the relative stereochemistry is confirmed by NMR to be 2R*,3S with high statistical probability (>99.5%). The proposed approach also simultaneously verifies the molecular conformation of the two hydroxy groups in terrein established by X-ray data. It is sufficient to use only shift tensor values at carbons 2 and 3, the stereocenters, to characterize both the stereochemistry and molecular conformations. The solid-state NMR method appears to be especially useful for determining relative stereochemistry of compounds or their derivatives that are difficult to crystallize.  相似文献   

16.
17.
Elastin is the main structural protein that provides elasticity to various tissues and organs in vertebrates. Molecular motions are believed to play a significant role in its elasticity. We have used solid-state NMR spectroscopy to characterize the dynamics of an elastin-mimetic protein as a function of hydration to better understand the origin of elastin elasticity. Poly(Lys-25), [(VPGVG)(4)(VPGKG)](39), has a repeat sequence common to natural elastin. (13)C cross-polarization and direct polarization spectra at various hydration levels indicate that water enhances the protein motion in a non-uniform manner. Below 20% hydration, the backbone motion increases only slightly whereas above 30% hydration, both the backbone and the side-chains undergo large-amplitude motions. The motional amplitudes are extracted from (13)C-(1)H and (1)H-(1)H dipolar couplings using 2D isotropic-anisotropic correlation experiments. The root mean square fluctuation angles are found to be 11-18 degrees in the dry protein and 16-21 degrees in the 20% hydrated protein. Dramatically, the amplitudes increase to near isotropic at 30% hydration. Field-dependent (1)H rotating-frame spin-lattice relaxation times (T(1rho)) indicate that significant motions occur on the microsecond time-scale (1.2-2.3 micros). The large-amplitude and low-frequency motion of poly(Lys-25) at relatively mild hydration indicates that the conformational entropy of the protein in the relaxed state contributes significantly to the elasticity.  相似文献   

18.
A fundamental question relating to protein folding/unfolding is the time evolution of the folding of a protein into its precisely defined native structure. The proper identification of transition conformations is essential for accurately describing the dynamic protein folding/unfolding pathways. Owing to the rapid transitions and sub-nm conformation differences involved, the acquisition of the transient conformations and dynamics of proteins is difficult due to limited instrumental resolution. Using the electrochemical confinement effect of a solid-state nanopore, we were able to snapshot the transient conformations and trace the multiple transition pathways of a single peptide inside a nanopore. By combining the results with a Markov chain model, this new single-molecule technique is applied to clarify the transition pathways of the β-hairpin peptide, which shows nonequilibrium fluctuations among several blockage current stages. This method enables the high-throughput investigation of transition pathways experimentally to access previously obscure peptide dynamics, which is significant for understanding the folding/unfolding mechanisms and misfolding of peptides or proteins.

A solid-state nanopore based method is described for resolving protein-folding-related problems via snapshotting the folding intermediates and characterizing the kinetics of a single peptide.  相似文献   

19.
The natural abundance 15N NMR spectra of glycylglycine and alanylalanine derivatives with various N- or O-protecting groups were measured in dimethyl sulphoxide, pyridine and fornic acid. The nitrogens directly attached to the protecting group have chemical shifts relative to NO3? in the range ?220 to ?358 ppm. The influence of the amino end group on the next peptide nitrogen (Gly-Gly bond) amounts to, at most, 1.7 ppm. The influence of the O-protecting group is also weak (Δ δ?2 ppm), but strongly dependent on the solvent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号