首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,a primary model is established for MD(molecular dynamics) simulation for the PBXs(polymer-bonded explosives) with RDX(cyclotrimethylene trinitramine) as base explosive and PS as polymer binder.A series of results from the MD simulation are compared between two PBX models,which are represented by PBX1 and PBX2,respectively,including one PS molecular chain having 46 repeating units and two PS molecular chains with each having 23 repeating units.It has been found that their structural,interaction energy and mechanical properties are basically consistent between the two models.A systematic MD study for the PBX2 is performed under NPT conditions at five different temperatures,i.e.,195 K,245 K,295 K,345 K,and 395 K.We have found that with the temperature increase,the maximum bond length(L max) of RDX N N trigger bond increases,and the interaction energy(E N-N) between two N atoms of the N-N trigger bond and the cohesive energy density(CED) decrease.These phenomena agree with the experimental fact that the PBX becomes more sensitive as the temperature increases.Therefore,we propose to use the maximum bond length L max of the trigger bond of the easily decomposed and exploded component and the interaction energy E N-N of the two relevant atoms as theoretical criteria to judge or predict the relative degree of heat and impact sensitivity for the energetic composites such as PBXs and solid propellants.  相似文献   

2.
Cluster bond enthalpies, EL(BB), and orders, n?(BB), for the structurally characterised closo anions, BnHn2? (n = 6 and 8–12), have been estimated using the logarithmic length—enthalpy and enthalpy—order relationships EL(BB) (kJ mol?1) = 1.766 × 1011 [L(BB)]?4.0 and EL(BB) (kJ mol?1) = 318.8[n?(BB)]0.697, respectively. In a parallel study, the molecular-orbital bond index CNDO-based calculation method has been used to give BB and BH bond indices, I(BB) and I(BH), from which bond index based bond enthalpies, EI, have been calculated using the relationships EI(BB) = 297.9 I(BB) and EI(BH) = 374.8I(BH) (enthalpies in kJ mol?1; lengths in pm). From these, total skeletal bond enthalpies Σ E(BB), and total bond enthalpies, Σ E(BB) + Σ E(BH), have been calculated. Although calculated values of EL and Σ EL generally exceed those of EI and Σ EI by some 8% and calculated values of I generally exceed those of n? by a greater amount, the trends in these parameters for the series of BnHn2? anions are very similar, showing the greater efficiency with which the n + 1 skeletal electron pairs are used as n increases. However, the two approaches differ in that, whereas the Σ EI values suggest that the anions are all of comparable stability, the ΣEL values clearly show B6H62?, B10H102? and B12H122? to be more stable than B8H82?, B9H92? and B11H112?. The interatomic distances in B7H72? and in the unknown B5 H52? are estimated and used to assess their relative stabilities. The EL values suggest that B7 H72? is of comparable stability to B8H82? etc., but show B5H52? as relatively unstable. The EI values suggest that both of these anions should be relatively stable members of the series of closo anions.  相似文献   

3.
A DFT quantum-chemical study of NO adsorption and reactivity on the Cu20 and Cu16 metal clusters showed that only the molecular form of NO is stabilized on the copper surface. The heat of monomolecular adsorption was calculated to be ΔH m = ?49.9 kJ/mol, while dissociative adsorption of NO is energetically unfavorable, ΔH d = + 15.7 kJ/mol, and dissociation demands a very high activation energy, E a = + 125.4 kJ/mol. Because of the absence of NO dissociation on the copper surface, the formation mechanism of the reduction products, N2 and N2O, is debatable since the surface reaction ultimately leads to N-O bond cleavage. As the reaction occurs with a very low activation energy, E a = 7.3 kJ/mol, interpretation of the NO direct reduction mechanism is both an important and intriguing problem because the binding energy in the NO molecule is high (630 kJ/mol) and the experimental studies revealed only physically adsorbed forms on the copper surface. It was found that the formation mechanism of the N2 and N2O reduction products involves formation (on the copper surface) of the (OadN-NOad) dimer intermediate that is chemisorbed via the oxygen atoms and characterized by a stable N-N bond (r N-N ~1.3 Å). The N-N binding between the adsorbed NO molecules occurs through electron-accepting interaction between the oxygen atoms in NO and the metal atoms on the “defective” copper surface. The electronic structure of the (OadN-NOad) surface dimer is characterized by excess electron density (ON-NO)δ? and high reactivity in N-Oad bond dissociation. The calculated activation energy of the destruction of the chemisorbed intermediate (OadN-NOad) is very low (E a = 5–10 kJ/mol), which shows that it is kinetically unstable against the instantaneous release of the N2 and N2O reduction products into the gas phase and cannot be identified by modern experimental methods of metal surface studies. At the same time, on the MgO surface and in the individual (Ph3P)2Pt(O2N2) complex, a stable (OadN-NOad) dimer was revealed experimentally.  相似文献   

4.
In this study, quantum chemical calculations of geometric parameters, conformational, natural bond orbital (NBO) and nonlinear optical (NLO) properties, vibrational frequencies, 1H and 13C NMR chemical shifts of the title molecule [C9H7F5N2O3] in the ground state have been calculated with the help of Density Functional Theory (DFT-B3LYP/6-311++G(d,p)) and Hartree-Fock (HF/6-311++G(d,p)) methods. The optimized geometric parameters, vibrational frequencies, 1H and 13C NMR chemical shifts values are compared with experimental values of the investigated molecules. Comparison between experimental and theoretical results showed that B3LYP/6-311++G(d,p) method is able to provide more satisfactory results. In order to understand this phenomenon in the context of molecular orbital picture, we examined the molecular frontier orbital energies (HOMO, HOMO-1, LUMO, and LUMO + 1), the energy difference (ΔE) between E HOMO and E LUMO, electronegativity (χ), hardness (η), softness (S) calculated by HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The molecular surfaces, Mulliken, NBO, and Atomic polar tensor (APT) charges of the investigated molecule have also been calculated by using the same methods.  相似文献   

5.
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A) 7 2? , d(AATTAAT)2?, d(TTAATTA)2?, and d(CCGGCCG)2?] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A) 7 2? , d(AATTAAT)2?, and d(TTAATTA)2? has an average activation energy (E a ) of ~1.0 eV and a preexponential factor (A) of 1010 s?1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2?. The average Arrhenius parameters for the loss of cytosine and guanine are E a =1.32 ± 0.03 eV and A=1013.3±0.3 s?1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T) 7 2? over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s?1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.  相似文献   

6.
《Polyhedron》1987,6(4):685-693
The strength of multiple metal-metal bonds in the metal dimers M2 (M = Cr, Mo or W) and binuclear complexes M2(OH)6 (M = Cr, Mo or W), M2Cl4(PH3)4 M = V, Cr, Mn, Nb, Mo, Tc, Ta, W or Re) has been studied by a non-local density functional theory. The method employed here provides metal-metal bond energies [D(M-M)] in good accord with experiments for Cr2 and Mo2, and predicts that W2 of the three dimers M2 (M = Cr, Mo or W) has the strongest metal-metal bond with D(W-W) = 426 kJ mol−1 and R(W-W) = 2.03 Å. Among the binuclear complexes studied here we find the 3d elements to form relatively weak metal-metal bonds (40–100 kJ mol−1), compared to the 4d and 5d elements with bonding energies ranging from 250 to 450 kJ mol−1. The metal-metal bond for a homologous series is calculated to be up to 100 kJ mol−1 stronger for the 5d complex, than for the 4d complex. An energy decomposition of D(M-M) revealed that the σ-bond is somewhat stronger than each of the π-bonds, and one order of magnitude stronger than the δ-bond. For the same transition metal we find D(M-M) to be larger for M2(PH3)4Cl4 (M = Cr, Mo or W) than for M2(OH)6 (M = Cr, Mo or W), and attribute this to a stronger π-interaction in the former series. While many of the findings here are in agreement with previous HFS studies, the order of stability D(3d-3d) « D(4d-4d) < D(5d-5d) differs from the order D(3d-3d) « D(5d-5d) < D(4d-4d) obtained by the HFS method, and the present method provides in general more modest values for D(M-M) than the HFS scheme.  相似文献   

7.
Numerical integration has been carried out for p(x) = ?xx?2e?xdx where x = E/RT with E = 20, 25, …, 100 kcal mole?1 and T = 300, 350, …, 1000 K. Using the values of -log p(x), numerical equations have been obtained that enable calculations of -log p(x) at other values of E and T.  相似文献   

8.
The applications of the reverse pulse method are extended in order to distinguish between different paths of electrodimerization. The method for determination of rate constants of the chemical reaction coupled with charge transfer (ec2) is further developed. Measurements of Kd vs. tp provide valuable information for the determination of rate constants.The reverse pulse method is applied in the study of the electrodimerization of 1-alkyl-4-t-butylpyridinium ions (1-alkyl=?CH3; ?CH2CH3; ?CH(CH 3)2) in acetonitrile. It is found that the electrodimerization mechanism is consistent with the sequence: Py+ + e = Py ? 12 Py2. The formal potential Eo′ is measured directly for 1-CH(CH3)2, and indirectly for the other pyridium ions. All values are identical within experimental error (Eo′ = ?1.835 V vs. Ag/Ag+).The values of kd and km are measured. With an increase in the size of the l-alkyl group, kd decreases and km increases. This is consistent with the expected “stabilization” of the radicals due to the increase of the l-alkyl group size which hinders the dimerization site (2- and 6-positions).  相似文献   

9.
Excess molar volumes VmE at 298.15 K were obtained, as a function of mole fraction x, for series I: {x1-C4H9Cl + (1 ? x)n-ClH2l + 2}, and II: {x1,4-C4H8Cl2 + (1 ? x)n-ClH2l + 2}, for l = 7, 10, and 14. 10, and 14. The instrument used was a vibrating-tube densimeter. For the same mixtures at the same temperature, a Picker flow calorimeter was used to measure excess molar heat capacities Cp, mE at constant pressure. VmE is positive for all mixtures in series I: at x = 0.5, VmE/(cm3 · mol?1) is 0.277 for l = 7, 0.388 for l = 10, and 0.411 for l = 14. For series II, VmE of {x1,4-C4H8Cl2 + (1 ? x)n-C7H16} is small and S-shaped, the maximum being situated at xmax = 0.178 with VmE(xmax)/(cm3 · mvl?1) = 0.095, and the minimum is at xmin = 0.772 with VmE(xmin)/(cm3 · mol?1) = ?0.087. The excess volumes of the other mixtures are all positive and fairly large: at x = 0.5, VmE/(cm3 · mol?1) is 0.458 for l = 10, and 0.771 for l = 14. The Cp, mEs of series I are all negative and |Cp, mE| increases with increasing l: at x = 0.5, Cp, mE/(J · K?1 · mol?1) is ?0.56 for l = 7, ?1.39 for l = 10, and ?3.12 for l = 14. Two minima are observed for Cp, mE of {x1,4-C4H8Cl2 + (1 ? x)n-C7H16}. The more prominent minimum is situated at xmin = 0.184 with Cp, mE(xmin)/(J · K?1 · mol?1) = ?0.62, and the less prominent at xmin = 0.703 with Cp, mE(xmin)/(J · K?1 · mol?1) = ?0.29. Each of the remaining two mixtures (l = 10 and 14) has a pronounced minimum at low mole fraction (xmin = 0.222 and 0.312, respectively) and a broad shoulder around x = 0.7.  相似文献   

10.
The results of quantum chemical calculations of the potential profile in the LaF3 crystal lattice in the range of superionic phase transition are presented for clusters containing 24 to 1200 ions. It is found that the values of formation energy E a of vacancy-interstitial fluoride ion defects and potential barriers E d hindering the movement of fluoride ions and determining the efficiency of charge transport in the lattice grow monotonously from the minimum values E a = 0.12 eV and E d = 0.22 eV for a 24-ion cluster to the maximum E a = 0.16 eV and E d = 0.26 eV for clusters of 576 and 1200 ions. It is shown that the values of E a and E d obtained for the dielectric phase (T < T c) are several times the values of E a and E d for the superionic state (TT c) of LaF3. The values of E a and E d obtained by quantum chemical calculations from clusters of 576 and 1200 ions agree well with energies E a and E d obtained from the analysis of the data of the Raman and quasielastic light scattering.  相似文献   

11.
An X-ray structural investigation has been carried out for four polycyclic nitramines with an isowurtzitane structure. These compounds are high-density, high-energy materials: 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclo(5.5.0.03,11.05,9)dodecane (4), 4,8,10,12-tetranitro-2,6-dioxa-4,8,10,12-tetrazatetracyclo (5.5.0.03,11.05,9)dodecane (5), and 4,6,10,12-tetranitro-2,8-dioxa-4,6,10,12-tetrazatetracyclo(5.5.0.03,11.05,9)-dodecane (6). Nitramine 5 crystallizes as triclinic (form α, dcalc = 1.966 g/cm3) and trigonal (form β, dcalc = 2.014 g/cm3) modifications. All amine nitrogen atoms have a nonplanar structure; the mean sum of bond angles of the six-membered cycles is 345.2°, and the corresponding mean value for the five-membered cycles is 337.6°. Other features of their intramolecular structure are also discussed.  相似文献   

12.
《中国化学快报》2022,33(10):4705-4709
Semiconductor photocatalysis holds great promise for breaking the inert chemical bonds under mild condition; however, the photoexcitation-induced modulation mechanism has not been well understood at the atomic level. Herein, by performing the DFT+U calculations, we quantitatively compare H2 activation on rutile TiO2(110) under thermo- versus photo-catalytic condition. It is found that H2 dissociation prefers to occur via the heterolytic cleavage mode in thermocatalysis, but changes to the homolytic cleavage mode and gets evidently promoted in the presence of photoexcited hole (h+). The origin can be ascribed to the generation of highly oxidative lattice O-radical (Obr??) with a localized unoccupied O-2p state. More importantly, we identify that this photo-induced promotion effect can be practicable to another kind of important chemical bond, i.e., C–H bond in light hydrocarbons including alkane, alkene and aromatics; an exception is the C(sp1)-H in alkyne (HCCH), which encounters inhibition effect from photoexcitation. By quantitative analysis, the origins behind these results are attributed to the interplay between two factors: C-H bond energy (Ebond) and the acidity. Owing to the relatively high Ebond and acidity, it favors the C(sp1)-H bond to proceed with the heterolytic cleavage mode in both thermo- and photo-catalysis, and the photoexcited Obr?? is adverse to receiving the transferred proton. By contrast, for the other hydrocarbons with moderate/low Ebond, the Obr?? would enable to change their activation mode to a more favored homolytic one and evidently decrease the C–H activation barrier. This work may provide a general picture for understanding the photocatalytic R–H (R = H, C) bond activation over the semiconductor catalyst.  相似文献   

13.
The structure and electronic parameters of ClZ(CH3)2X molecules (Z = C, Si, Ge, X = CH3, OCH3) were calculated by the RHF/6–31G(d) and RHF/6–311G(d,p) methods with full geometry optimization; calculations of ClZ(CH3)2OCH3 molecules were also performed by the RHF/6–31G(d) method with partial geometry optimization. The 35Cl NQR frequencies calculated from the populations of less diffuse 3p constituents of valence p orbitals of chlorine [RHF/6–31G(d)] were in agreement with the experimental values. The 35Cl NQR frequencies for molecules with X = OCH3 are lower than those for molecules with X = CH3 (the Z atom being the same), due mainly to direct through-field polarization of the Z-Cl bond, induced by the effect of unshared electron pair of the oxygen atom in the trans position with respect to that bond. The difference in the 35Cl NQR frequencies decreases in going from Z = C to Z = Si, Ge, in parallel with variation of the Z-Cl bond polarization as the size of Z increases.  相似文献   

14.
The thermal degradation of polypropylene-containing pro-oxidants was studied by determining the oxidation induction time (OIT) and by assessing the activation energy (E a) estimated from thermogravimetric analysis. Polypropylene (PP) was prepared with different concentrations of two pro-oxidants, polyacetal (POM) and d2w®. The pro-oxidants accelerated the oxidation process of oxidation of PP in the presence of oxygen; however, there is little change in the values of the OIT in compositions with different concentrations of d2w®. For PP/POM blends, the volatile low molecular mass compounds, primarily from POM-derived formaldehyde, accounted for the decrease in E a with the increasing POM concentration.  相似文献   

15.
The apparent activation and deactivation energies and the corresponding frequency factors of coal desulfurization byThiobacillus ferrooxidans have been determined to be ΔE a = 60.9 kJ,A a = 1.45 s-1 and ΔEd = 178.3 kJ,A d = 5.65×1027 s-1, respectively. The thermo-dynamic values (AG?, ΔH ?, and ΔS?) of the activated complex were calculated. Kinetic parameters of the Monod equation were determined to beV m = 55.9 mg dm-3 h-1 andK = 24.1% pulp density. The maximum rate of desulfurization of coal was found to beV m = 55.7 mg dm-3 h-1 for the particle size. The generalized second order regression equation relating the yield of desulfurization to the leaching parameters was shown to adequately predict coal extraction data and optimum values of process variables. Tank leaching studies using optimum conditions resulted coal desulfurization about 90%. The iron hydrolysis reactions involving the formation of mono- and poly-nuclear, hydroxo- and sulfato complexes of amorphous and crystalline precipitates were discussed.  相似文献   

16.
The effect of In impurity on the crystallization kinetics and the changes taking place in the structure of (Se7Te3) have been studied by DTA measurements at different heating rates (α=5 deg·min?1, 10 deg·min?1, 15 deg·min?1 and 20 deg·min?1). From the heating rate dependence of the values ofT g,T c andT p, the glass transition activation energy (E t) and the crystallization activation energy (E c) have been obtained for different compositions of (Se7Te3)100?xInx (0≤×≤20). The variation of viscosity as a function of temperature has been evaluated using Vogel-Tamman-Fulcher equation. The crystallization data are analysed using Kissinger's and Matusita's approach for nonisothermic crystallization. It has been found that for samples containing In=0, 10, 15, 20 at%, three dimensional nucleation is predominant whereas for samples containing In=5 at%, two dimensional nucleation is the dominant mechanism. The compositional dependence ofT g and crystallization kinetics are discussed in terms of the modification of the structure of the Se?Te system.  相似文献   

17.
The mixed-ligand complex compoundscis- andtrans-[Cr(en)2(NH2CH3)2]Br(B10H10) were synthetized. It was demonstrated by IR spectroscopy that the hydrogen atoms of the anions B10H 10 2? carrying the negative charge interact with the proton of the amino group in the coordinated amine, forming the bond system N-H-H-B. The complex salts obtained have high densities (d 20=1.55 g/cm3 and 1.47 g/cm3 for thecis andtrans isomer, respectively) and high thermal stability 230–250 °C. At 250–270 °C both thecis and thetrans compound dissociate, with simultaneous substitution of two methylamine molecules in the coordination sphere of the chromium(III) ion by the anions Br? and B10H 10 2? . The process is described by the topochemical equationf(α)=(1?α)2/3 (reaction on the interface of the phases), and is characterized by high values of the kinetic parameters: Ea=510–524 kJ/mol, logA=49.9–50.2. We found that the value ofE a for the amine substitution process in thecis compound, determined by evolved gas analysis under non-isothermal conditions, decreases by 220 kJ/mol when the heating rate is increased from 5.0 to 7.5 deg/min. This finding can be explained in that when the heating rate is increased, the intervals in which thecis- trans isomerization and ligand substitution reactions proceed come closer to one another, and finally overlap; the activation energy of the isomerization process then compensates part of the energy required for activation of the ligand substitution process.  相似文献   

18.
It is shown that in the limit of large detuning energy and in the absence of coordinate dependence of the transition moment, the resonance Raman amplitude for a 0 → n transition on a harmonic potential surface is proportional to (δ2? + δ2+)?1 × ??∞ exp (?q2) · [?nΔV(q)/?q11] dq< where ΔV(q) is the difference between the arbitrary excited-state surface and the initial harmonic potential. The resonant and non-resonant detuning energies are given by δ? = E ? hv and δ+ = E + hv, where v is the incident laser frequency and E is the minimum separation between the potential surfaces.  相似文献   

19.
The microwave spectrum of 1,2,4-trifluorobenzene has been observed in the range 12.5–18.0 GHz and 21.5–25.3 GHz at dry-ice temperature and assigned up to angular momentum state J = 39. The ground state rotational constants and the five quartic centrifugal distortion constants thus obtained are (in MHz): Ã = 3084.0037 ± 0.0108, B? = 1278.3614 ± 0.0062, C? = 903.6989 ± 0.0108, dj = ( ?4.599 ± 0.621) · 10?4, djk = (5.9757 ± 1.1586) · 10?3, dk = (11.4923 ± 2.0886) · 10?3, dwj = (4.0 ± 1.0) · 10?7, dwk=(?5.8± 1.1) · 10?6.The small value of Δ = 0.029 (amu Å2) shows that the molecule is planar and an r0 - structure using a regular hexagonal benzene ring with the bond lengths C-C = 1.397 Å, C-H = 1.084 Å and C-F = 1.312 Å, reproduces the rotational constants.  相似文献   

20.
Is it possible to facilitate the formation of a genuine Be?Be or Mg?Mg single bond for the E2 species while it is in its neutral state? So far, (NHCR)Be?Be(NHCR) (R=H, Me, Ph) have been reported where Be2 is in 1Δg excited state imposing a formal Be?Be bond order of two. Herein, we present the formation of a single E?E (E=Be, Mg) covalent bond in E2(NHBMe)2 (E=Be, Mg; NHBMe=(HCNMe)2B) complexes where E2 is in 3u+ excited state having (nσg+)2(nσu+)1((n+1)σg+)1 (n=2 for Be and n=4 for Mg) valence electron configuration and it forms electron‐shared bonding with two NHBMe radicals. The effects of bonding with nσu+ and (n+1)σg+ orbitals will cancel each other, providing the former E?E bond order as one. Be2(NHBMe)2 complex is thermochemically stable with respect to possible dissociation channels at room temperature, whereas the two exergonic channels, Mg2(NHBMe)2 → Mg + Mg(NHBMe)2 and Mg2(NHBMe)2 → Mg2 + (NHBMe)2, are kinetically inhibited by a free energy barrier of 15.7 and 18.7 kcal mol?1, respectively, which would likely to be further enhanced in cases of bulkier substituents attached to the NHB ligands. Therefore, the title complexes are first viable systems which feature a neutral E2 moiety with a single E?E covalent bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号