首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用密度泛函理论B3LYP/6-31G*方法,对一系列以三聚咔唑为中心核的准八极矩分子的几何结构进行优化,在所得优化结构的基础上,结合有限场方法(FF)和含时密度泛函理论(TD-DFT)探讨了体系的二阶非线性光学(NLO)性质和电子光谱。结果表明,研究分子的极化率(α)及二阶NLO系数(β)随着取代基吸电子能力的增强而增大。当研究分子以三氰基苯乙烯为受体,碳-碳双键为共轭桥时,显示了较大的二阶NLO系数和良好透光性的优化,说明准八极矩分子内多重电荷转移可以有效地解决"非线性-透光性"矛盾。该系列分子在非线性材料领域中有望成为具有良好应用价值的候选分子。  相似文献   

2.
采用密度泛函理论B3LYP/6-311G**方法,对一系列以三亚吡嗪为中心的有机共轭分子的二阶NLO性质和电子光谱进行了理论研究.结果表明,取代基推、拉电子能力的变化、相对数目及共轭桥的性质对研究分子的极化率及二阶NLO系数都有较大的影响.当研究分子以甲氨基为供体、以三氰基乙烯为受体、并以C=C双键为共轭桥时,显示了较大的二阶NLO活性和良好透光性的优化.该系列分子在NLO材料领域有较好的潜在应用价值.  相似文献   

3.
Experimental FTIR, FT-Raman and FT-NMR spectroscopic studies of o-fluoronitrobenzene and p-fluoronitrobenzene have been carried out. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G** and 6-31G** basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent and in gas phase were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values. The theoretical parameters obtained at B3LYP levels have been compared with the experimental values.  相似文献   

4.
刘春光 《物理化学学报》2011,27(7):1661-1665
采用量子化学密度泛函理论(DFT)结合有限场(FF)的方法对一系列含有Pt―Pt键金属配合物的电子结构和二阶非线性光学(NLO)性质进行了理论计算. 结果表明改变共轭配体对Pt―Pt键影响不大. 由配体到Pt―Pt金属基团的电荷转移强度随配体增长而变大. 金属配合物静态一阶超极化率随配体的增长而增大, 配合物电荷的改变基本不影响这类化合物的二阶NLO性质. 具有相对长的共轭配体的配合物IId具有最大的二阶NLO响应. 含时密度泛函理论(TD-DFT)计算表明配合物IId的二阶NLO响应来自于混有配体到金属的配体内的π→π*电荷转移跃迁的贡献.  相似文献   

5.
The structural and electronic properties of a highly solvatochromic merocyanine dye, 2-(3-cyano-5,5-dimethyl-4-(3-(1-octadecylpyridin-4(1H)-ylidene)prop-1-enyl)furan-2(5H)-ylidene)malononitrile (pyr3pi), have been investigated using UV-vis, NMR, hyper-Rayleigh scattering, and Raman spectroscopies and further interpreted using computational chemistry. Spectroscopic data indicate that pyr3pi exists in its zwitterionic form even in low polarity solvents with electronic absorption spectra showing a hypsochromic shift with an increase in solvent polarity and NMR experiments indicating an increasingly zwitterionic structure in chloroform as the temperature is lowered. Raman spectra in increasingly polar solvents show small variations of the structure that are consistent with a change toward a structure with more zwitterionic character. However, comparison of the calculated and experimental vibrational energies and intensities and comparison of NMR coupling constants with calculated bond order indicate that calculations underestimate the amount of charge separation seen in low polarity solvents. Although for this system density functional theory (DFT) calculations and the two-state model qualitatively reproduce negative solvatochromism, they fail to reproduce the trends in hyperpolarizability seen experimentally. This is attributed to solvent field DFT calculations underestimating the degree of charge separation in reaction fields representing low polarity solvents.  相似文献   

6.
Our method for estimating solvent effects on electronic spectra in media with strong solute-solvent interactions is applied here to calculate the absorption and fluorescence solvatochromatic shifts of dilute triazines in water. First, the ab initio CASSCF method is used to estimate the gas-phase electronic excitation properties and state charge distributions; second, Monte Carlo simulations are performed to elucidate liquid structures around the ground and excited state solute; finally, the solvent shift is evaluated based on the gas-phase charge distributions and the explicit solvent structures. For the dilute triazine solutions, simulations predict one linear (different) hydrogen bond attached to each nitrogen atom. Upon the first (1)(n, pi*)electronic excitation one hydrogen bond is completely broken. For the absorption and fluorescence spectra, our calculations demonstrated that the specific solvent-solute interaction, in any electronic state, plays a critical role in the determination of solvent shifts.  相似文献   

7.
Electronic charge density distribution in molecular systems has been described in terms of the topological properties. After briefly reviewing methods of obtaining charge densities from X-ray diffraction and theory, typical case studies are discussed. These studies include rings and cage systems, hydrogen bonded solids, polymorphic solids and molecular NLO materials. It is shown how combined experimental and theoretical investigations of charge densities in molecular crystals can provide useful insights into electronic structure and reactivity.  相似文献   

8.
The first hyperpolarizabilities and origin of nonlinear optical (NLO) properties of arylimido molybdate derivatives have been investigated by density functional theory (DFT). The molecular orbital character analysis reveals that organoimido-to-polyanion charge transfer may be responsible for the NLO properties of this kind of molybdate derivatives. The NLO study shows intra-ion charge transfer is helpful to increase the first hyperpolarizability of arylimido molybdate derivatives. The lengthening of organoimido pi-conjugation enhances the betavec value. System 4 has the largest betavec value at the static electronic field, 1.238 x 10(-27)esu. Orbital analysis shows that the degree of charge transfer between polyanion cluster and organic segment was increased when the second organoimido polyanion was introduced. The present investigation provides important insight into NLO origin and properties of polyanion arylimido molybdate derivatives.  相似文献   

9.
A series of multiple [60]fullerene terminated oligo(p-phenylene ethynylene) (OPE) hybrid compounds has been synthesized through a newly developed in situ ethynylation method. Structural and magnetic shielding properties of the highly unsaturated carbon-rich C(60) and OPE scaffolds were characterized by 1D and 2D NMR spectroscopic analyses. Electronic interactions between the [60]fullerenes and the OPE backbones were investigated by UV/Vis spectroscopic and cyclic voltammetry (CV) experiments. Our studies clearly show that although the multiple [60]fullerene groups are connected via pi-conjugated OPE frameworks, they present diminutive electronic interactions in the ground state, and the electronic behavior of the [60]fullerene cages are only affected by the OPE backbones through modest inductive effects. Interestingly, sizable third-order nonlinear optical (NLO) responses (gamma) and enhanced two-photon absorption (TPA) cross-sections (sigma((2))) were determined for the multifullerene-OPE hybrid 31 relative to its OPE precursor from differential optical Kerr effect (DOKE) experiments. Such enhanced NLO performance is presumably due to the occurrence of periconjugation and/or charge transfer effects in the excited state. In addition, comparatively strong excited-state absorption was observed and characterized for OPE pentamer 12. Thus, the use of such fullerene-derivatized conjugated oligomers aids the quest for molecules with large third-order NLO and TPA properties.  相似文献   

10.
采用基于第一原理的含时密度泛函理论(TDDFT)对一系列具有类立方烷簇芯结构的过渡金属簇合物二阶非线性光学性质进行了研究。结果证明, 由于簇芯结构的对称性的影响, 这一类簇分子的二阶非线性光学系数的数值要小于三核欠完整类立方烷体系。通过对电子结构的分析, 发现二阶非线性光学性质主要是由簇芯内电荷的迁移造成的。轨道分析显示, -S原子对于电荷的迁移起主要的传递作用。定域化轨道分析证明簇分子中存在的多中心键有利于簇芯内电荷的迁移。分子模拟的研究表明:虽然类立方烷结构簇分子的值比较小, 但是通过合理的配体设计, 获得具有较大值非线性光学晶体是可能的。  相似文献   

11.
采用密度泛函理论(DFT)对12顶点[1-R-CB11-Me11]-碳硼烷的结构和二阶非线性光学(NLO)调节效应进行计算分析. 结果表明,C位连接的取代基R供、吸电子能力的不同以及分子发生可逆氧化-还原反应对分子构型有一定影响. 由自然键轨道(NBO)电荷和电子自旋密度分析可知,分子的氧化中心是碳硼笼,分子的氧化反应可导致碳硼笼部分给、受体特性发生改变. 氧化态分子的第一超极化率总有效值(βtot)大于相应还原态分子,当C位取代基R为供电子基团(—NH2)的分子时,氧化态与还原态的βtot值变化最大. 这类分子的氧化-还原反应可以有效调节二阶NLO光学效应.  相似文献   

12.
13.
Geometry structures, electronic spectra, and third-order nonlinear optical (NLO) properties of Fe(eta (5)-C 55X 5) 2 (X = CH, N, B) have first been investigated by time-dependent density functional theory. We analyzed the intramolecular interactions between ferrocene and the C 50 moiety. The calculated electronic absorption spectrum indicates that the short wavelength transitions are ascribed to the C 50 moiety mixed charge transfer transition of ferrocene itself, while the low energy excitation transitions are ascribed to the unique charge transfer transition from ferrocene to C 50 moiety in these systems. The third-order polarizability gamma values based on sum of states (SOS) method show that this class of ferrocene/fullerene hybrid molecule possesses a remarkably large third-order NLO response, especially for Fe(eta (5)-C 55B 5) 2 with the static third-order polarizability (gamma av) computed to be -10410 x 10 (-36) esu and the intrinsic second hypepolarizability to be 0.250. Thus, these complexes have the potential to be used for excellent third-order nonlinear optical materials. Analysis of the major contributions to the gamma av value suggest that the charge transfer from ferrocene to C 50 moiety along the z-axis (through Fe atom and the centers of two hybrid fullerenes) play the key role in the NLO response. Furthermore, boron substitution is an effective way of enhancing the optical nonlinearity compared to CH and N substitution, owing to smaller energy gap and better conjugation through the whole molecule.  相似文献   

14.
The atomic-level mechanisms of protein regulation by post-translational phosphorylation remain poorly understood, except in a few well-studied systems. Molecular mechanics simulations can in principle be used to help understand and predict the effects of protein phosphorylation, but the accuracy of the results will of course depend on the quality of the force field parameters for the phosphorylated residues as well as the quality of the solvent model. The phosphorylated residues typically carry a -2 charge at physiological pH; however, the effects of phosphorylation can sometimes be mimicked by substituting Asp or Glu for the phosphorylated residue. Here we examine the suitability of explicit and implicit solvent models for simulating phospho-serine in both the -1 and -2 charge states. Specifically, we simulate a capped phosphorylated peptide, Ace-Gly-Ser-pSer-Ser-Nme, and compare the results to each other and to experimental observables from an NMR experiment. The first major conclusion is that explicit water models (TIP3P, TIP4P and SPC/E) and a Generalized Born implicit solvent model provide reasonable agreement with the experimental observables, given appropriate partial charges for the phosphate group. The Generalized Born results, however, show greater hydrogen bonding propensity than the explicit solvent results. Distance dependent dielectric treatments perform poorly. The second major conclusion is that many ensemble-averaged properties obtained for the phosphopeptide in the -1 and -2 charge states are strikingly similar; the -1 species has a slightly higher propensity to form internal hydrogen bonds. All of the results can be rationalized by quantifying the strength of the P-O/H-N hydrogen bond, which depends on a sensitive balance between strongly favorable charge/dipole and dipole/dipole interactions and strongly unfavorable desolvation.  相似文献   

15.
The exploration of novel materials with excellent nonlinear optical (NLO) features is an area of frontline investigation for scientific community from technological point of view. This study reports the novel phenothiazine-based rod-shaped and T-shaped NLO molecules which are quantum chemically designed from synthesized compounds: rod-shaped (CFA and CBA) and T-shaped (CTA, CCA and CPA). Structural tailoring was performed on D-π-π-A centered CPA chromophore and the effect of various π-spacers, as well as solvents on NLO response properties is investigated. Density functional theory (DFT) along with time dependent DFT (TDDFT) calculations have been executed at B3LYP/6-311G(d,p) functional to examine entire analysis. Results showed a smaller energy gap in structurally modified compounds as compared to reference CPA. Global reactivity parameters analysis revealed smaller hardness and larger softness values in T-shaped compounds. UV–Vis analysis of investigated molecules displayed a red shift in absorption maximum value as compared to CPA. Natural bond orbital (NBO) and frontier molecular orbital (FMO) analysis revealed the stability and intra-molecular electron transferring (ICT) process in investigated molecules. ICT showed the effective charge shift from donor to acceptor via π-spacers. Overall, promising NLO response exists in gas phase and different solvents (acetonitrile, ethyl alcohol and water). Interestingly, proposed molecule CPP presented a maximum value of linear polarizability < α > as 1518.23 a.u and first hyperpolarizability (βtot) as 755322.39 a.u in acetonitrile solvent. In short, entitled chromophores exhibited excellent NLO properties due to their lower charge transport resistance. This NLO study may open a new topic for researchers to discover novel NLO for hi-tech submissions of modern era.  相似文献   

16.
The synthesis and absorption/fluorescence properties of two novel intramolecular charge transfer (ICT) compounds of (fluorene-2-yl)-(9-ethylcarbazole-3-yl) ketene and 1-phenyl-3-(fluorenone-2-yl)-5-(9-ethylcarbazole-3-yl)-2-pyrazoline were reported. The primary structure of the target compounds was characterized by IR and 1H NMR. The systems contained a fluorenone or a propenon group as an electron acceptor (A) and an N-ethylcarbazole and a pyrazoline group as electron donors (D). From the emissive properties it was concluded that the electronic coupling between D and A was sufficient to allow charge transfer in these molecules. The ICT maximal emission displayed a large wavelength shift and Stokes shifts increased in response to the increase of the solvent polarity. The highly solvatochromic properties made the two compounds of great interest as new classes of fluorescent probes, electroluminescent and electrofax materials.  相似文献   

17.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

18.
Bioactive imidazole derivative, 2-(2,4-difluorophenyl)-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline, has been synthesized and characterized by IR, UV-vis, NMR and elemental (CHN) analysis. The electric dipole moment (μ) and the hyperpolarizability (β) have been studied both experimentally and theoretically, which reveals that the synthesized imidazole derivative possesses non-linear optical (NLO) behavior. This chromophore possess more appropriate ratio of off-diagonal versus diagonal β tensorial component (r=β(xyy)/β(xxx)=-0.19) which reflects the in plane nonlinearity anisotropy. Since they have largest μβ(0) value, the reported imidazole can be used as potential NLO material. Within this context, reasonable conclusions concerning the steric hindrance in the chromospheres, push-pull character, hyperpolarizability of the imidazole and their application as NLO materials will be drawn. The solvent effect on the absorption and fluorescence bands was analyzed by a multi-component linear regression in which several solvent parameters were analyzed simultaneously.  相似文献   

19.
《结构化学》2020,39(8):1422-1436
In this research, a density functional theory(DFT) calculation was performed for investigation adsorption behavior of the anticancer drug Vemurafenib on BNNT(5,5-9) by using the M06-2X/6-31 G* level of theory in the solvent water. The electronic spectra of the Vemurafenib drug, BNNT(5,5-9) and complex BNNT(5,5-9)/Vemurafenib in solvent water were calculated by Time Dependent Density Functional Theory(TD-DFT) for the study of adsorption effect. The non-bonded interaction effects of the Vemurafenib drug with BNNT(5,5-9) on the electronic properties, natural charges and chemical shift tensors have been also detected. The results display the change in title parameters after process adsorption. According to the natural bond orbital(NBO) results, the molecule Vemurafenib and BNNT(5,5-9) play as both electron donor and acceptor at the complex BNNT(5,5-9)/Vemurafenib. On the other hand, the charge transfer occurs between the bonding, antibonding or nonbonding orbitals in two molecules drug and BNNT. As a consequence, BNNT(5,5-9) can be considered as a drug delivery system for the transportation of Vemurafenib as anticancer drug within the biological systems.  相似文献   

20.
The functionality of the proton-coupled electron transfer (PCET) model was tested on a squaraine-sensitized solar cell. The geometrical parameters, excitations, and electronic structures of free and Ti+4-bound squaraine dye were monitored using a set of pure and hybrid density functional theory (DFT) functionals with diffuse and polarization functions. The infrared spectra showed the dye-metal proton transfer. The UV-Vis spectra of unbound and bound squaraine dye using the pure functional (PBEPBE) are in excellent agreement with the experimental ones. The first photoexcited state charge transfer enhanced the charge density around the anchoring group of neat and bound squaraine dye. The injection of electronic charge into the titanium complex was confirmed by density of states (DOS) and natural bond orbital (NBO) analyses. The comparatively high total hyperpolarizability of the squaraine dye is indicative of a potent nonlinear optical (NLO) devise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号