In this paper, we investigated the effect of light driving force induced surface deformation on azobenzene-containing polymers. The surface deformation is attributed to light-induced mass migration inside the polymers. Circular cap arrays are firstly fabricated by high power laser ablation via polarization controlled three-beam interference. The circular caps are subsequently exposed to polarization controlled two-beam interfering field. The results illuminate that when the interfering laser beams are both set to P polarization, the circular caps are deformed. While the laser beams are of other interfering modes like (S, S) and (+45° , -45°), the caps are seldom deformed. The circular caps are also exposed to single intensity-homogeneous linearly polarized laser beam. The deformation of the caps keeps the same direction as the irradiating polarization. A model based on the focusing effect of the circular caps is addressed to explain the origin of the light driving force for mass migration in azopolymers. The all-optical approach for the production of deformed caps can be used to generate aspherical lens, which may be applied to many domains. 相似文献
Decomplexation of organic ligands through redox titration has been applied to catalyst synthesis, developing an improved preparation method for Fe-ferrierite (Fe-FER), the catalyst showing excellent performance and durability for N2O decomposition under realistic conditions for nitric acid plants. 相似文献
A benchtop method for the facile production of nanoscale metal structures on polymers is demonstrated. This approach allows for the design and patterning of a wide range of metallic structures on inexpensive polymer surfaces, affording the fabrication of nanoscaled platforms for use in the design of sensors, actuators, and disposable electronic and photonic devices. Numerous structures, from simple nanowires to multilayered metallic gratings, are demonstrated, with sizes ranging from microns to the nanoscale. The process involves molding a malleable metal film deposited on a rigid substrate such as mica, by the compression of a plastic polymer stamp with the desired pattern against the metal film. While under compression, an etchant is then used to modify the metal. Upon separation of the stamp from the support, micro- to nanoscaled metallic structures are found on the stamp and/or on the substrate. The sizes of the structures formed depend on the sizes of the features on the stamp but can be fine-tuned by about 4-fold through variations in both pressure and duration of etching. Also, depending on the processing, multiple dimension metallic structures can be obtained simultaneously in a single stamping procedure. The metallic structures formed on the stamp can also be subsequently transferred to another surface allowing for the construction of multilayered materials such as band gap gratings or the application of electrical contacts. Using this approach, fabrication of both simple and complex micro- to nanoscaled structures can be accomplished by most any researcher as even the grating structure of commercial compact disks may be used as stamps, eliminating the requirement of expensive lithographic processes to form simple structures. 相似文献
Advanced two-dimensional (2D) materials and their heterostructure can be fabricated with the assistance of supercritical carbon dioxide (SC CO2). And this fabrication strategy will undoubtedly have a promising future in materials processing. 相似文献
We report a new patterning process which takes place as a result of demixing of a binary polymer/solute mixture. An efficient, sustainable approach for ordering nanosized rings of so-called single molecule magnets (SMMs) is thus provided. It exploits the self-organization process in which SMM patterned film evolves to a spatially correlated pattern of nanosized rings. At long time, the anisotropic patterning of the film drives the ring to coalesce, into parallel lines of nanometric width. 相似文献
Nanoparticles and polymers have great potential for lowering cost and increasing functionality of printed sensors and electronics. However, creation of practical devices requires that many of these materials be patterned on a single substrate, and many current patterning processes can only handle a single material at a time, necessitating alignment of serial processing steps. Higher throughput and lower cost can be achieved by patterning multiple materials simultaneously. To this end, the microfluidic molding process is adapted to pattern various nanoparticle and polymer inks simultaneously, in a completely additive manner, with three-dimensional control and high relative positional accuracy between the different materials. A differential template distortion observed in channels containing different inks is analyzed and found to result from pressure force in the template due to flow of a highly viscous and highly concentrated ink in small channels. The resulting optimization between patterning speed and dimensional fidelity is discussed. 相似文献
Controlled syntheses of multicomponent metal nanocrystals (NCs) and high-index surfaces have attracted increasing attention due to the specific physical and chemical properties of such NCs. Taking advantage of copper underpotential deposition as a bridge, hexoctahedral Au-Pd alloy NCs with {hkl} facets exposed were successfully synthesized, while phase separation occurred in the absence of Cu(2+) ions. The as-prepared hexoctahedral Au-Pd alloy NCs exhibited very excellent performance in terms of both formic acid electro-oxidation and methanol tolerance due to synergism between the high-index facets and the alloy. 相似文献
The surface properties of films made of p-methoxyphenacyl derivative terpolymers, associated with photocleavage by UV irradiation, and their optical patterning are investigated. The deprotection reaction has been monitored by UV and FTIR spectroscopy, contact angle measurements, and X-ray photoelectron spectroscopy, revealing the photoremoval of the protecting p-methoxyphenacyl group in high yields under mild conditions. Parallel and serial patterning of the films has been performed by selective irradiation through optical masks and by laser irradiation via fiber tips of a scanning near-field optical microscope, respectively. By irradiation of photolabile protected functional groups, free carboxylic groups become exposed to the surface with which fluorescent dyes and proteins can be associated specifically. 相似文献
The GaCl3-assisted [2 + 3] cycloaddition of Mes*-N=P-Cl (Mes* = 2,4,6-tBu3C6H2) with trimethylsilylazide (TMS-N3) results in the formation of the first tetrazaphosphole, stabilized as a GaCl3 adduct in high yields (>96%). 相似文献
We report on the assembly of tribromo-substituted dimethylmethylene-bridged triphenylamine (heterotriangulene) on Ag(111). Depending on activation temperature, two-dimensional porous metal-coordination or covalent networks are obtained. 相似文献
A Ni(0)/ZnCl(2) system effectively promotes the coupling of enones and alkene-tethered alkynes. In the reaction with 1,6-enynes, the oxidative cyclization of Ni(0) species on enones across the alkyne part followed by ZnCl(2)-promoted cleavage generates alkenylnickel intermediates. Subsequent migratory insertion of the tethered alkene occurs with 5-exo-cyclization. When the resulting sigma-alkylnickel intermediates have beta-hydrogen atoms, the reaction terminates by beta-hydrogen elimination to provide cyclopentane derivatives. On the other hand, a sigma-alkylnickel intermediate that does not have beta-hydrogen atoms undergoes the insertion of a second alkene unit to cause a domino effect via a three-fold C-C bond formation process with and without the cleavage of one C-C bond. 相似文献
Nanoparticle spray deposition finds numerous applications in pharmaceutical, electronics, manufacturing, and energy industries and has shown great promises in engineering the functional properties of the coated parts. However, current spray deposition systems either lack the required precision in controlling the morphology of the deposited nanostructures or do not have the capacity for large-scale deposition applications. In this study, we introduce a novel spray system that uses supercritical CO2 to assist the atomization process and create uniform micron-size water droplets that are used as cellulose nanocrystal (CNC) carriers. CNCs are selected in this study as they are abundant, possess superior mechanical properties, and contain hydroxyl groups that facilitate interaction with neighboring materials. We fundamentally investigate the effect of different process parameters, such as injection pressure, gas-to-liquid ratio, the axial distance between the nozzle and substrate, and CNC concentration on the final patterns left on the substrate upon evaporation of water droplets. To this end, we show how tuning process parameters control the size of carrier droplets, dynamics of evaporation, and self-assembly of CNCs, which in turn dictate the final architecture of the deposited nanostructures. We will particularly investigate the morphology of the nanostructures deposited after evaporation of micron-size droplets that has not been fully disclosed to date. Different characterization techniques such as laser diffraction, polarized microscopy, and high-resolution profilometry are employed to visualize and quantify the effect of each process parameter. Numerical simulations are employed to inform the design of experiments. Finally, it is shown that the fabricated nanostructures can be engineered based on the size of the carrier droplets controlled by adjusting spray parameters and the concentration of nanoparticles in the injected mixture. Process parameters can be selected such that nanoparticles form a ring, disk, or dome-shaped structure. Moderate operational conditions, simplicity, and time efficiency of the process, and use of abundant and biodegradable materials, i.e., water, CNCs, and CO2 promote the scalability and sustainability of this method.
Photoelectrocatalytic degradation of various dyes under visible light irradiation with a TiO(2) nanoparticles electrode has been investigated to reveal the mechanism for TiO(2)-assisted photocatalytic degradation of dyes. The degradation of both cationic and anionic dyes at different biases, including the change in the degradation rate of the dyes and the photocurrent change with the bias potential, the degraded intermediates, the voltage-induced adsorption of dyes, the accumulation of electrons in the TiO(2) electrode, the effect of various additives such as benzoquinone (BQ) and N,N-dimethyl aniline (DMA), and the formation of active oxygen species such as O(2)(*-) and H(2)O(2) were examined by UV-visible spectroscopy, HPLC, TOC, and spin-trap ESR spectrometry. It was found that the dyes could controllably interact with the TiO(2) surface by external bias changes and charging of dyes. The cationic dyes such as RhB and MG underwent efficient mineralization at negative bias, but the N-dealkylation process predominated at positive bias under visible light irradiation. The discolorations of the anionic dyes SRB and AR could not be accelerated significantly at either negative or positive bias. At a negative bias of -0.6 V vs SCE, O(2)(*-) and dye(*+) were formed simultaneously at the electrode/electrolyte interface during degradation of cationic RhB. In the case of anionic dyes, however, it is impossible for the O(2)(*-) and dye cationic radical to coexist at the electrode/electrolyte surface. Experimental results imply both the superoxide anionic radical and the dye cationic radical are essential to the mineralization of the dyes under visible light-induced photocatalytic conditions. 相似文献
The electron spin resonance (ESR) spin-trapping technique using 5,5-dimethyl-1-pyrroline-N-oxide as the spin-trap reagent has been applied to detect free radical intermediates generated during in situ ultraviolet or visible irradiation of aqueous 4-chlorphenol (4-CP)/N-doped TiO(2) suspensions. ESR measurements gave the first direct evidence that the active species ((*)OH and O(2*-)) are responsible for the photodecomposition of 4-CP over N-doped TiO(2) under visible-light irradiation, strongly suggesting that the photocatalytic reaction of organic compounds in powdered N-doped TiO(2) systems proceed via surface intermediates of oxygen reduction or water oxidation, not via direct reaction with holes trapped at the N-induced midgap level. These results have important implications for the evaluation of the oxidative powder of TiO(2-x)N(x) catalysts. 相似文献
We report the synthesis of poly(acrylic acid-ran-vinylbenzyl acrylate) (PAArVBA), a photo-cross-linkable weak polyelectrolyte, and its incorporation into polyelectrolyte multilayer (PEM) films. PEM films assembled from PAArVBA and poly(allylamine hydrochloride) (PAH) are found to exhibit similar thickness trends with assembly pH as those previously reported for poly(acrylic acid) (PAA)/PAH multilayers. Swelling properties of the as-built and photo-cross-linked films are studied by in situ ellipsometry. Two-dimensional masking techniques are used to pattern regions of high and low swelling, as confirmed by atomic force microscopy (AFM), and to provide spatial control over the low-pH-induced microporosity transition exhibited by PAH/PAA PEMs. Films containing alternating blocks of PAH/PAArVBA bilayers and PAH/PAA bilayers were assembled, laterally photopatterned, and exposed to low-pH solution to generate nanoporosity leading to patterned Bragg reflectors, thereby demonstrating three-dimensional control over film structure in these weak PEM assemblies. 相似文献
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug. 相似文献