首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Potentiometric CO2 sensors based on the Na+ conducting solid electrolyte Nasicon have been investigated. The sensor arrangement may be described as chemical sensor of type III, $$( - )Pt(or Au), Na_{0.9} CoO_2 |Nasicon|Na_2 CO_3 , Pt(or Au) ( + ),$$ , with Na0.9CoO2 as reference electrode and Na2CO3 as auxiliary or sensing electrode. It is shown that major problems are related to the magnitude of the voltage and long-term stability of this type of sensor. The measured EMFs are generally reduced compared to the values calculated from literature data of standard Gibbs energies of formation. This observation is ascribed to reactions at the interfaces and competing surface reactions. The interfacial processes may occur at both electrolyte / sensing and electrolyte / reference electrode, and represent charged capacitors. It has also been observed that the slope of the measured EMF as a function of the CO2 partial pressure is reversed in some cases. This phenomenon may be related to the possible reduction of Na2O which is dissolved in Nasicon during the formation of Na2CO3 upon an increase of the CO2 partial pressure.  相似文献   

2.
E. Steudel  W. Weppner 《Ionics》1996,2(2):107-112
Dynamic measurements are described for the solid state electrochemical detection of CO2. The sensor device was built up in the same way as a type III potentiometric sensor based on the galvanic cell Pt / NaxCoO2 / Na-β/β″-Alumina / Na2CO3 / Pt, CO2, O2. A periodically varying voltage was applied which results in a current changing with time as a result of the alternating cell reaction. The I/U characteristics of this process depends strongly on the specific dynamics of the sensor, i.e., the kinetics and thermodynamics of the cell reaction and also on the capacitive behaviour. In order to separate these different processes, measurements were carried out under various experimental conditions. The current-time dependence was investigated as a function of the CO2 partial pressure, temperature and both amplitude and frequency of the applied voltage. It could be seen, that the effect of each process on the sensor performance is increased or decreased by the selection of appropriate sensor parameters. Kinetic, thermodynamic and capacitive responses are generally altogether involved in the sensor response.  相似文献   

3.
D. Horwat  A. Billard 《Ionics》2005,11(1-2):120-125
Thin sodium superionic conductor (Nasicon) coatings are deposited on rotating substrates by co-sputtering in the reactive mode of a Zr-Si and a Na3PO4 target. The influence of the discharge current and of the target-to-substrate distance is investigated owing to the targeted Na3Zr2Si2PO12 stoichiometry. A thermo-structural analysis shows that the amorphous as-deposited coating of convenient composition crystallises around 700 °C in the monoclinic structure. Electrical measurements performed at room temperature after various annealing treatments indicate a ionic conductivity of about 2·10−3 S·cm−1, consistent with that of bulk Nasicon. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

4.
Paramagnetic singly ionized oxygen vacancies Vo and chemisorbed Sn4+-O2 species were detected by electron paramagnetic resonance measurements on SnO2 and transition metal (Pt, Ru)-doped SnO2 thin film that had been reduced with CO at different temperatures and then brought into contact with oxygen. The amounts of the two paramagnetic species were evaluated and are discussed as a function of the film annealing temperature in air, the reduction temperature under CO, and the type and concentration of the doping transition element. Also the structural properties of the film were identified through glancing incidence X-ray diffraction analysis. Measurements of the electrical sensitivityS(S=R air/R CO, whereR air andR CO are the resistance under air and under CO(800 ppm)/air respectively) show that the trend of the sensitivity values vs. the reduction temperature with CO could be predicted by the parallel trend of the number of Sn4+−O2 centers.  相似文献   

5.
O. Schäf 《Ionics》1996,2(3-4):274-281
Potentiometric CO2 gas sensors with Li conducting glasses/glass ceramics of the system Li2O-Al2O3-SiO2 (different nominal composition) as solid electrolytes have been investigated. Li2CO3 was used as CO2 and O2 sensitive auxiliary electrode. During the sensor test measurements, the CO2 partial pressure was varied between 1×10−3 and 1×10−1 bar at a constant O2 partial pressure of 2.1×10−1 bar whereas N2 was used as carrier gas. Comparative measurements were accomplished with sensors comprising Na and K ion conducting glasses. A metastable reference electrode was formed at the contact zone between the Au metal electrode and the former Li glasses of definite nominal composition by crystallization processes taking place, which lead to stable, reproducible CO2 dependent EMF signals for more than 90d. The thermodynamically expected EMF difference and the observed EMF difference agree quite well between 500 and 600 °C. At 600 °C, the drift of sensors with glasses as solid electrolytes and direct Au glass/glass ceramics contact as reference electrode amounts typically 0.32 mV/d (p(CO2)=1×10−3 bar, p(O2)=2.1×10−1 bar at the measuring electrode), if a metastable multiphase equilibrium is formed. At identical partial pressures of CO2 and O2, the signal reproducibility of these sensors with different solid electrolyte glasses of the same nominal composition lies within 30 mV at 600 °C. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

6.
The effect of non-Faradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion (EP) was investigated on Pt films deposited on Y2O3-stabilized-ZrO2 (YSZ), an O2− conductor, TiO2, a mixed conductor, and Nafion 117 solid polymer electrolyte (SPE), a H+ conductor and also on Pd films deposited on YSZ and β″-Al2O3 a Na+ conductor. Four catalytic systems were investigated, i.e. C2H6 oxidation on Pt/YSZ, C2H4 oxidation on Pd/YSZ and Pd/β″-Al2O3, C2H4 oxidation on Pt/TiO2 and H2 oxidation on Pt/Nafion 117 in contact with 0.1 M aqueous KOH solution. In all cases pronounced and reversible non-Faradaic electrochemical modification of catalytic rates was observed with catalytic rate enhancement up to 2000% and Faradaic efficiency values up to 5000. All reactions investigated exhibit a pronounced electrophobic behaviour which is due to the weakening of chemisorptive oxygen bond at high catalyst potentials. Ethane oxidation, however, also exhibits electrophilic behaviour at low potentials due to weakened binding of carbonaceous species on the surface. The general features of the phenomenon are similar for all four cases presented here showing that the NEMCA effect is a general, electrochemically induced, promoting catalytic phenomenon not depending on the reaction and the type of supporting electrolyte. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

7.
郭祝崑  李香庭 《物理学报》1983,32(3):406-410
采用电子探针(EPMA)定点轰击法研究了β-,β″-Al2O3和Nasicon(Na3Zr2Si2PO12)的钠沉积效应。按照递减离子源的离子迁移和电解沉积机理导出了钠沉积动力学方程式,可以较好地说明快离子导体在电子束轰击下钠计数率随时间的变化。在β-Al2O3单晶内有丰富的可迁移钠离子源,曲线上升的延续时间较长;而对于Na关键词:  相似文献   

8.
O. Schäf 《Ionics》1996,2(3-4):266-273
Alkali-ion conducting glasses/glass ceramics of the system Me2O-A12O3-SiO2 (Me=Li, Na) were applied as solid electrolytes in potentiometric gas sensors to detect CO2 in the presence of O2 at increased temperatures. The corresponding Me-Carbonates were utilized as auxiliary electrodes. Sensors using the direct Au-glass contact as a kind of reference electrode (type I), as well as symmetrical sensors with carbonate phase at the reference and measuring electrode (type II - for comparative measurements) were manufactured. By applying Au as electrode metal, the theoretically expected EMF difference and the observed EMF difference of both sensor types agree quite well with the expected values according to the Nernst equation between 500 and 600 °C (over four orders of magnitude of CO2 partial pressure (10−5 – 10−1 bar) at constant O2 partial pressure (2.1×10−1 bar)). A long time stability of 120 days for sensors of type I with Li glasses has been observed, although evaporation of carbonate phase (Li2CO3) was detected under the conditions of sensor application. Sensors of type I (with Li2CO3) show thermodynamically unexpected cross-sensitivities to H2O. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

9.
Using the lyotropic liquid crystalline templating strategy, the nanostructured platinum film was electrochemically deposited on the α-Al2O3 supported dense palladium membrane. The XRD and TEM results of the Pt film revealed a hexagonal array of cylindrical pores with a uniform pore diameter of ca. 3.8 nm and a pore-to-pore separation of ca. 7.6 nm. The structure parameters of the Pt film were almost the same as those of the hexagonal liquid crystalline template. Based on SEM observations, the Pt film was featureless, smooth, and tightly adherent to the dense Pd membrane. The specific surface area of the Pt film, measured by using cyclic voltammetry, was ca. 13.8 m2 g−1, which was in accord with the theoretical value of 14.5 m2 g−1 for a perfect hexagonal nanostructure with the same structure parameters. By combining the dense Pd membrane for selective permeation to hydrogen with the Pt film of high specific surface area for catalysis, the as-synthesized two-layer film will be a promising catalytic membrane to intensify hydrogen-related reaction processes.  相似文献   

10.
A new CO2 formation process was observed in the CO oxidation over Pt(111) surface below 200 K. The desorption flux of the product CO2, which is formed from the interaction between chemisorbed CO and adsorbed oxygen molecules O22? (a), showed a very sharp angular distribution along the surface normal.  相似文献   

11.
To improve both the thermal stability and the electrical conductivity, alkali ion conducting carbonates and sulfates with admixtures of alkaline earth compounds as well as insulating materials such as γ-Al2O3 were prepared and characterized by conductivity measurements, X-ray studies, DSC and SEM/EDX. The addition of the divalent carbonates and sulphates causes two effects. On the one hand side, the alkali earth compounds can be dissolved depending on the ionic radius to a more or less large extent, which is accompanied by an increase in the electrical conductivity. On the other hand side, a two phase mixture consisting of an excess of dopant is formed with an enhancement in the conductivity and improvement of the mechanical stability. This phenomenon, known as composite effect, could be observed in the following systems Na2CO3-BaCO3, Na2CO3-SrCO3, Na2SO4-BaSO4, K2SO4-BaSO4, Na2SO4-γ-Al203, K2SO4-γ-Al2O3.  相似文献   

12.
E. Steudel  P. Birke  W. Weppner 《Ionics》1996,2(5-6):421-426
A thin film solid state electrochemical gas sensor has been investigated for CO2 detection based on the cell reaction: Na++OH+CO2=NaHCO3. The galvanic cell arrangement is Au | NaxCoO2−δ (ref.) | NASICON | Au, SnO2 where the right hand electrode is in contact with CO2 and O2 in a humid atmosphere. The response has been compared to results obtained with a conventional pellet type sensor. Furthermore, both devices have been exposed to CO and humidity. Strong cross-sensitivities were observed leading to large changes in the emf in both cases. The response to moisture is reversible and fast with a response time of about 1 min according to a fast surface reaction of H2O with SnO2. The presence of CO leads to a signal change with a high response time and a very slow reverse reaction. However, the response to CO2 is not influenced by the presence of CO or H2O with regard to the signal height and response time. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

13.
《Surface science》1998,401(3):392-399
Kinetic oscillations in catalytic CO oxidation on Pt have been studied on large (millimeter size) single crystal planes of Pt as well as on a Pt field emitter tip that exposes different crystal facets of nanometer size. In order to examine the compatibility of results from the two types of experiments, the regions of different dynamical behavior (bifurcation diagram) have been mapped out in pCO,T-parameter space using a field electron microscope (FEM) and a field ion microscope (FIM). The comparison with the results of single crystal measurements shows that in the case of applied electrostatic fields less than 5 V nm−1 (FEM), the field-induced effects are negligible, but they are significant for fields exceeding 12 V nm−1 (FIM). The field-induced shift of the bifurcation diagram toward lower pCO values, observed with FIM, is explained in terms of a field-modified interaction of CO and O2 with Pt studied here with field ion appearance energy spectroscopy. With coadsorbed lithium (submonolayer coverage), the existence range for rate oscillations is shifted toward higher pCO values. This shift is attributed to a redistribution of the electron density at the surface induced by alkali metal co-adsorption.  相似文献   

14.
The effect of Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA effect) or Electrochemical Promotion (EP) was used to promote the methane oxidation reaction to CO2 and H2O over Pd polycrystalline films interfaced with yttria-stabilized zirconia in galvanic cells of the type: CH4, O2, CO2, Pd/YSZ/Au, CH4, O2, CO2 It was found that by applying positive potentials or currents and thus, supplying O2− onto the catalyst surface, up to 90-fold increases in CH4 oxidation catalytic rate can be obtained. The induced changes in catalytic rate were two orders of magnitude higher than the corresponding rate of ion transfer to the catalyst-electrode surface, i.e. faradaic efficiency Λ values above 100 can be attained. The reaction exhibits electrophobic behavior under the experimental conditions of the investigation. The results can be rationalized on the basis of the theoretical considerations invoked to explain NEMCA behavior, i.e. the effect of changing work function on chemisorptive bond strengths of catalytically active electron donor or acceptor adsorbates. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

15.
In the present work, X-ray photoelectron spectroscopy (XPS) was used to investigate the composition depth profiles of Bi3.15Nd0.85Ti3O12 (BNT) ferroelectric thin film, which was prepared on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD). It is shown that there are three distinct regions formed in BNT film, which are surface layer, bulk film and interface layer. The surface of film is found to consist of one outermost Bi-rich region. High resolution spectra of the O 1s peak in the surface can be decomposed into two components of metallic oxide oxygen and surface adsorbed oxygen. The distribution of component elements is nearly uniform within the bulk film. In the bulk film, high resolution XPS spectra of O 1s, Bi 4f, Nd 3d, Ti 2p are in agreement with the element chemical states of the BNT system. The interfacial layer is formed through the interdiffusion between the BNT film and Pt electrode. In addition, the Ar+-ion sputtering changes lots of Bi3+ ions into Bi0 due to weak Bi-O bond and high etching energy.  相似文献   

16.
Ab initio quantum-chemical calculations of the (CF3CO2H2+3O2) and (CF3CO23O2) complexes were performed by the MP2 method. It was found that these complexes were characterized by low complex formation energies, of 2.97 and 1.72 kcal/mol, respectively. According to the MP2(full)/6-311++G(d, p) calculation data, the bridge stabilization of oxygen by linking with both the CF3CO2H2+ cation and CF3CO2 anion is much more favorable energetically. A study of the potential energy surface of the joint molecular system (CF3CO2H2+3O2…CF3CO2) shows that proton experiences activationless transfer from the cation to the 3O2 molecule accompanied by electron transfer from the CF3COO anion. An analysis of spin density distribution shows that two radicals are stabilized in the (CF3CO2….OOH….O=C(OH)CF3) complex in the triplet state observed on the potential energy surface.  相似文献   

17.
A. Billard  P. Vernoux 《Ionics》2005,11(1-2):126-131
8 to 120 nm-thick Pt coatings were sputter-deposited on Yttria-Stabilised Zirconia (YSZ) membranes, 17 mm in diameter, by magnetron sputtering of a Pt target at low pressure (0.3 Pa). The catalytic activity of propane combustion under open-circuit conditions is first measured near to the stoichiometry (0.2%C3H8/1%O2) and shows that the coatings present a rather high catalytic activity. Close-circuit measurements were finally performed at 337 °C and 400 °C. They show that rather high faradaic efficiencies in the range 106 can be reached as soon as the Pt film is thick enough to allow a bias of its whole area. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

18.
T. Widmer  V. Brüser  O. Schäf  U. Guth 《Ionics》1999,5(1-2):86-90
Sensors with solid electrolytes provide the possibility of correct and fast measurements of partial pressures of various gases. By modification of the solid electrolyte, sensors with specific performances may be manufactured. Layers of Na+-, Li+-, Ca2+- and Sr2+-β“-alumina on top of polycrystalline α-alumina substrates were produced by an in-situ formation process and were used as solid electrolytes for CO2 and SOx sensors. Carbonates and sulphates were applied as measuring electrodes and oxidic mixtures of SiO2 and silicates were used as reference electrodes. The different performance of these sensors was investigated over a wide temperature range and the results were compared with theoretical data. Different solid electrolyte / electrode combinations were applied, which all showed different characteristic cross sensitivities against water and organic components. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

19.
《Solid State Ionics》2006,177(26-32):2221-2225
Scanning tunneling microscopy (STM) was used to investigate the surfaces of Pt(111) single crystals interfaced with YSZ and β″-Al2O3 at atmospheric pressure. In both cases the STM imaged the reversible electrochemically controlled dosing (backspillover) of O2− species and of Na+ species on Pt(111) surface respectively, which both form a (12 × 12) hexagonal structure on the Pt(111) surface. On the mechanistic side, the STM has confirmed the backspillover mechanism of electrochemical promotion and metal support interactions.  相似文献   

20.
B. L. Kuzin  D. I. Bronin 《Ionics》2001,7(1-2):142-151
The behavior of the electrode systems M,O2/O2 (M = porous Pd, Pt, A and dense In2O3; O2− = ZrO2-based single-crystal solid electrolyte) was studied by means of impedance measurements. The examination of the Pt,O2/O2− electrode system showed that the constant phase element (CPE) can be attributed to a nonuniform distribution of current at the electrode surface. It was observed that the CPE parameters n and B in the expression YCPE = B (jω)n may be related by B=(Cdl)n (RΩ)n-1, where Cdl is the double layer capacitance and RΩ the resistance of the electrolyte in the cell. Then, Cdl of the electrode - electrolyte interface could be determined. The specific Cdl of the oxidized noble metals and india electrodes is nearly one order of magnitude lower than Cdl of the electrodes in the metallic state. The Cdl value of all the electrodes studied depends little or is independent of temperature and oxygen pressure. It is concluded that the Helmholtz model of double layer structure does not contradict the Cdl behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号