首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

2.
We present a comparison of the band alignment of the Ga1−xInxNyAs1−y active layers on GaAs and InP substrates in the case of conventionally strained and strain-compensated quantum wells. Our calculated results present that the band alignment of the tensile-strained Ga1−xInxNyAs1−y quantum wells on InP substrates is better than than that of the compressively strained Ga1−xInxNyAs1−y quantum wells on GaAs substrates and both substrates provide deeper conduction wells. Therefore, tensile-strained Ga1−xInxNyAs1−y quantum wells with In concentrations of x0.53 on InP substrates can be used safely from the band alignment point of view when TM polarisation is required. Our calculated results also confirm that strain compensation can be used to balance the strain in the well material and it improves especially the band alignment of dilute nitride Ga1−xInxNyAs1−y active layers on GaAs substrates. Our calculations enlighten the intrinsic superiority of N-based lasers and offer the conventionally strained and strain-compensated Ga1−xInxNyAs1−y laser system on GaAs and InP substrates as ideal candidates for high temperature operation.  相似文献   

3.
A novel method for positioning of InAs islands on GaAs (1 1 0) by cleaved edge overgrowth is reported. The first growth sample contains strained InxGa1−xAs/GaAs superlattice (SL) of varying indium fraction, which acts as a strain nanopattern for the cleaved-edge overgrowth. Atoms incident on the cleaved edge will preferentially migrate to InGaAs regions where favorable bonding sites are available. By this method InAs island chains with lateral periodicity defined by the thickness of InGaAs and GaAs of SL have been realized by molecular beam epitaxy (MBE). They are observed by means of atomic force microscopy (AFM). The strain nanopattern's effect is studied by the different indium fraction of SL and MBE growth conditions.  相似文献   

4.
Band offset calculations for zinc-blende pseudomorphically strained Al1−xGaxN/Al1−yGayN and InxGa1−xN/InyGa1−yN interfaces have been performed on the basis of the model solid theory combined with ab initio calculations. From the results obtained, we have calculated, separately, the valence and conduction band discontinuities of InxGa1−xN/GaN and GaN/Al1−xGaxN as a function of the indium and gallium contents respectively. Using the latter results, we have extended our study to simulate band discontinuities for strained Ga1−xInxN/relaxed Al1−yGayN heterointerfaces. Information derived from this investigation will be useful for the design of lattice mismatched heterostructures in modeling optoelectronic devices emitting at ultraviolet to near infrared wavelengths.  相似文献   

5.
The excitonic transitions between the ground electron and hole quantum well sublevels in strained InxGa1-xAs-AlyGa1-yAs multiple quantum well structures (x = 0.12−0.35 and y = 0.2−0.35) have been investigated by means of photoluminescence and photoconductivity measurements. The molecular beam epitaxy grown structures contained an AlyGa1-yAs matrix with one unstrained GaAs and three strained InxGa1-xAs quantum wells one of which was in the GaAs cladding layers. The ratio of the conduction band edhe line up to the band gap offset for the strained InxGa1-xAs-unstrained AlyGa1-yAs interface has been found to be 0.67 ± 0.08 for the studied regions of x and y.  相似文献   

6.
测量了AlyGa1-yAs/AlxGa1-xAs量子阱激光材料的光致荧光谱.发现在室温连续激光器材料的光致荧光谱中有两个峰,而不能激射的材料中则只有一个很宽的峰.将高能峰归属于准费密能级电子的跃迁. 关键词:  相似文献   

7.
Zhang  Y.-J.  Zhu  L.  Gao  Z.-G.  Chen  M.-H.  Dong  Y.  Xie  S.-Z. 《Optical and Quantum Electronics》2003,35(9):879-886
It is well known that complex rate equations and the couple wave equation have to be solved by the method of iteration in the simulation of multi-quantum well (MQW) distributed feedback Bragg (DFB) lasers, and a long CPU time is needed. In this paper, from the oscillation condition of lasers, we propose a simple and fast model for optimization of In1–xy Ga y Al x As strained MQW DFB lasers. The well number and the cavity length of 1.55 m wavelength In1–xy Ga y Al x As MQW DFB lasers are optimized using the model. As a result, the simple model gives almost the same results as the complex one, but 90% CPU time can be saved. In addition, a low threshold, high maximum operating temperature of 550–560 K, and high relaxation oscillation frequency of over 30 GHz MQW DFB laser is presented.  相似文献   

8.
A pseudopotential formalism within the virtual crystal approximation in which the effects of composition disorder are involved is applied to the GaxIn1−xAsyP1−y quaternary alloys in conditions of lattice matching to GaAs, InP and ZnSe substrates so as to predict their energy band gaps. Very good agreement is obtained between the calculated values and the available experimental data for the alloy lattice matched to InP and GaAs. The alloy is found to be a direct-gap semiconductor for all y compositions whatever the lattice matching to the substrates of interest. The (ΓΓ) band-gap ranges and the ionicity character are found to depend considerably on the particular lattice-matched substrates suggesting therefore that, for an appropriate choice of y and the substrate, GaxIn1−xAsyP1−y could provide more diverse opportunities to obtain desired band gaps, which opens up the possibility of discovering new electronic devices with special features and properties.  相似文献   

9.
We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from–40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1–x–y As/InP material system [1] instead of the conventional Ga x In1–x As y P1–y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1–x–y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].  相似文献   

10.
The optical properties of InAs/AlyGa1−yAs self-assembled quantum dots are studied as a function of temperature from 10 K to room temperature. The temperature dependence of carrier hopping between dots is discussed in terms of the depth of the dot confinement potential and the dispersion in dot size and composition. We show that carrier hopping between dots influences both the electrical and optical properties of laser devices having dots as active medium.  相似文献   

11.
Wurtzitic nitride quantum wells grown along the (0001) axis experience a large Stark effect induced by the differences of spontaneous and piezoelectric polarizations between the well and barrier materials. In AlxGa1−xN/GaN quantum wells, due to the adverse actions of quantum confinement, that blue-shifts transition energies, and of the Stark field, that red-shifts them, the transition energies are nearly independent of barrier compositions at a particular well thickness (L02.6 nm), at least for x≤0.3. The effect of alloy fluctuations is then minimal, as reflected by a minimum in the quantum well luminescence linewidth when LL0 for wells grown by molecular beam epitaxy on silicon or sapphire substrates. We use this effect to estimate the average variances of well widths and alloy composition fluctuations. Both results are in good agreement with, respectively, a scanning tunneling microscopy study of GaN (0001) surfaces, and estimates based on the lateral extent of the quantum well excitons.We then discuss the optical properties of the AlxGa1−xN barrier material, with particular emphasis on the symmetry of the valence band maximum (Γ9 or Γ7). We show that it may play an important role in the apparent barrier luminescence efficiency. We analyse the possible consequences of the barrier Γ9Γ7 crossover on the AlxGa1−xN/GaN quantum well properties.  相似文献   

12.
We have systematically studied the effect of an InxGa1−xAs insertion layer (IL) on the optical and structural properties of InAs quantum dot (QD) structures. A high density of 9.6×1010 cm−2 of InAs QDs with an In0.3Ga0.7As IL has been achieved on a GaAs (1 0 0) substrate by metal organic chemical vapor deposition. A photoluminescence line width of 25 meV from these QDs has been obtained. We attribute the high density and high uniformity of these QDs to the use of the IL. Our results show that the InGaAs IL is useful for obtaining high-quality InAs QD structures for devices with a 1.3 μm operation.  相似文献   

13.
Molecular beam epitaxial growth of InxGa1−xAs and InyAl1−yAs on Inp has been carried out by atomic layer epitaxy (ALE) and laser assisted molecular beam epitaxy (LAMBE). It is shown that these growth techniques have minimized both alloy clustering and interface roughness in the InGaAs/InAlAs system. Splitting of the PLE spectra indicates a roughness of 2–3 monolayers while transport measurements have placed an upper limit to the roughness at 4 monolayers.  相似文献   

14.
In this paper, a simulation and analysis on the short-circuit current density (Jsc) of the P-GaSb window/P-GaxIn1−xAs1−ySby emitter/N-GaxIn1−xAs1−ySby base/N-GaSb substrate structure is performed. The simulations are carried out with a fixed spectral control filter at a radiator temperature (Trad) of 950 °C, diode temperature (Tdio) of 27 °C and diode bandgap (Eg) of 0.5 eV. The radiation photons are injected from the front P-side. Expressions for minority carrier mobility and absorption coefficient of GaxIn1−xAs1−ySby semiconductors are derived from Caughey–Thomas and Adachi’s model, respectively. The P-GaxIn1−xAs1−ySby emitter with a much longer diffusion length is adopted as the main optical absorption region and the N-GaxIn1−xAs1−ySby base region contribute little to Jsc. The effect of P-GaSb window and P-GaxIn1−xAs1−ySby emitter region parameters on Jsc is mainly analyzed. Dependence of Jsc on thickness and carrier concentration of the window are analyzed; these two parameters need to be properly selected to improve Jsc. Contributions from the main carrier recombination mechanisms in the emitter region are considered; Jsc can be improved by suppressing the carrier recombination rate. Dependence of Jsc on the carrier concentration and layer thickness of the emitter P-region are also analyzed; these two parameters have strong effect on Jsc. Moreover, adding a back surface reflector (BSR) to the diode can improve Jsc. The simulated results are compared with the available experimental data and are found to be in good agreement. These theoretical simulations help us to better understand the electro-optical behavior of GaxIn1−xAs1−ySby TPV diode and can be utilized for performance enhancement through optimization of the device structure.  相似文献   

15.
In this paper, we calculated the optical fields for InxGa1−xN-multiquantum well (MQW) laser structures. Two different optical cavities are compared, the conventional step separate confinement heterostructure (Step) and a graded-index (GRIN) structure with a parabolic variation of the Al content in the AlxGa1−xN guide layers. A comparison is made regarding the confinement factor, near- and far-field patterns. An anomalous behavior for the confinement factor is observed in the structure, and it can be eliminated by choosing an appropriated combination of the layer’s thicknesses forming the waveguide. For AlxGa1−xN, an improved expression for the refractive index is presented, which shows better agreement with experimental data than previously reported expressions.  相似文献   

16.
We have succeeded in obtaining high critical electric fields from AlGaN layers using the p-InGaN/i-AlxGa1−xN/n-AlxGa1−xN (x=0–0.22) vertical conducting diodes grown on n-SiC substrates by low-pressure metalorganic vapor phase epitaxy (MOVPE). The breakdown voltage (VB) increases with increasing Al composition of the AlGaN layer. The corresponding critical electric fields are calculated to be 2.4 MV/cm for GaN and 3.5 MV/cm for Al0.22Ga0.78N. The critical electric field is proportional to the bandgap energy to a power of 2.5. This bandgap energy dependence is much stronger than that in the empirical expression proposed by Sze and Gibbons. The figure of merit, , increases with increasing Al composition, indicating the AlGaN-based pin diodes are promising for high-power and high-temperature electronic device applications.  相似文献   

17.
Laser effects on the electronic states in GaAs/ Ga1−xAlxAs V-shaped and inverse V-shaped quantum wells under a static electric field are studied using the transfer matrix method. The dependence of the donor binding energy on the laser field strength and the density of states associated with the impurity is also calculated. It is demonstrated that in inverse V-shaped quantum wells under electric fields, with an asymmetric distribution of the electron density, the position of the binding energy maximum versus the impurity location in the structure can be adjusted by the intensity of the laser field. This effect could be used to tune the electronic levels in quantum wells operating under electric and laser fields without modifying the physical size of the structures.  相似文献   

18.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

19.
The laser performance of violet InGaN laser diodes is investigated numerically. The polarization-dependent properties, including overlap of electron and hole wavefunctions, threshold current, and slope efficiency, are studied through the use of step-like quantum well structure. Furthermore, the electron and hole wavefunctions, band diagrams, and emission wavelength are compared and analyzed. The simulation results show that the lowest threshold current and the highest slope efficiency are obtained when the step-like quantum well structure is designed as In0.12Ga0.88N (2.5 nm)-In0.18Ga0.82N (1 nm) or In0.18Ga0.82N (2.5 nm)-In0.12Ga0.88N (1 nm) for violet laser diodes due to sufficiently enhanced overlap of electron and hole wavefunctions.  相似文献   

20.
Structure, Curie temperature and magnetostriction of RFex (1.6 x 2.0) and R(Fe1−yTiy)1.8 (y 0.2) alloys (R=Dy0.65Tb0.25Pr0.1) have been investigated using optical microscopy, X-ray diffraction, AC initial susceptibility and standard strain gauge techniques. The homogenized RFex alloys are found to be essentially single phase in the range of 1.8 x 1.85. The second phase is a rare-earth-rich phase when x 1.8, and (Dy, Tb, Pr)Fe3 phase when x 1.85. X-ray diffraction indicates that the R(Fe1−yTiy)1.8 alloys contain a small amount of Fe2Ti phase when y 0.05, which increases with the increment of Ti content. The Curie temperature of R(Fe1yTiy)1.8 alloys slightly enhances with increasing Ti concentration when y 0.05, then remains almost unchanged in the range of 0.05 y 0.20. The magnetostriction of RFex alloys is improved when x 1.80 and reduced by increasing Fe content when x 1.85. The magnetostriction of R(Fe1−yTiy)1.8 alloys is lowered by increasing Ti content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号