首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of water‐soluble ionic cellulose was obtained by means of the dissolution of cellulose in dimethylimidazolium methylphosphite at elevated temperatures over 120 °C. FTIR spectroscopy, 1H and 13C NMR spectroscopy, and elemental analysis results revealed that the repeating unit of the water‐soluble cellulose consists of a dialkylimidazolium cation and a phosphite anion bonded to cellulose. The degree of phosphorylation on the cellulose chain was between 0.4 and 1.3 depending on the reaction temperature and time. With an increasing degree of phosphorylation, water solubility was increased. Scanning electron microscopy and X‐ray diffraction analyses revealed that the cellulose crystalline phase in the parent crystalline cellulose changed to an amorphous phase upon transformation into ionic cellulose. Thermogravimetric analysis showed the prepared phosphorylated cellulose was stable over 250 °C and a substantial amount of residue remained at 500 °C.  相似文献   

2.
A new all-aqueous process of the dissolution/regeneration of cellulose was developed. Cellulose was completely dissolved in the 54–60 wt% lithium bromide aqueous solutions in the temperature range of 110–130 °C within a dissolution time of 1 h. Then, the cellulose was directly regenerated from the solution by cooling down to approximately 70 °C and removing the salts with water, yielding a translucent gel. The cellulose gel was not significantly chemically decomposed even though some decrease of the degree of polymerization occurred during the dissolution/regeneration of cellulose. The X-ray diffraction analysis demonstrated that the dissolution/regeneration of cellulose induced a crystalline structural change from cellulose I to cellulose II, confirming the complete loss of the original cellulose structure. The cellulose gel had highly porous three-dimensional networks composed of fairly long cellulose fibrils interconnected with one another. The dissolution/regeneration of cellulose in aqueous lithium bromide solutions offers new and important options for cellulose-based materials.  相似文献   

3.
Wang  Songlin  Wang  Qian  Kai  Yao 《Cellulose (London, England)》2022,29(3):1637-1646

Cellulose nanocrystals (CNCs) were first isolated from microcrystalline cellulose (MCC) by p-toluene sulfonic acid (p-TsOH) hydrolysis. Cellulose II nanocrystal (CNC II) and cellulose III nanocrystal (CNC III) were then formed by swelling the obtained cellulose I nanocrystal (CNC I) in concentrated sodium hydroxide solutions and ethylenediamine (EDA) respectively. The properties of CNC I, CNC II and CNC III were subjected to comprehensive characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicated that CNC I, CNC II and CNC III obtained in this research had high crystallinity index and good thermal stability. The degradation temperatures of the resulted CNC I, CNC II and CNC III were 300 °C, 275 °C and 242 °C, respectively. No ester bonds were found in the resulting CNCs. CNCs prepared in this research also had large aspect ratio and high negative zeta potential.

  相似文献   

4.
Microcrystalline cellulose (MCC), prepared from natural cellulose through acid hydrolysis, has been widely used in the food, chemical and pharmaceutical industries because of its high degree of crystallinity, small particle size and other characteristics. Being different from conventional mineral acids, phosphotungstic acid (H3PW12O40, HPW) was explored for hydrolyzing cellulose selectively for the preparation of MCC in this study. Various reaction parameters, such as the acid concentration, reaction time, temperature and solid-liquid ratio, were optimized. Rod-like MCC was obtained with a high yield of 93.62 % and also exhibited higher crystallinity and narrower particle diameter distribution (76.37 %, 13.77–26.17 μm) compared with the raw material (56.47 %, 32.41–49.74 μm) at 90 °C for 2 h with 58 % (w/w) HPW catalyst and a solid-liquid radio of 1:40. Furthermore, HPW can easily be extracted and recycled with diethyl ether for four runs without affecting the quality of the MCC products. The technology of protecting the crystalline region while selectively hydrolyzing the amorphous region of cellulose as much as possible by using HPW is of great significance. Due to the strong Brønsted acid sites and highest activity in solid heteropoly acid, the use of effective homogeneous HPW may offer an eco-friendly and sustainable way to selectively convert fiber resources into chemicals in the future.  相似文献   

5.
In this paper, a novel hybrid process for the treatment of microcrystalline cellulose (MCC) under hot-compressed water was investigated by applying constant direct current on the reaction medium. Constant current range from 1A to 2A was applied through a cylindrical anode made of titanium to the reactor wall. Reactions were conducted using a specially designed batch reactor (450 mL) made of SUS 316 stainless steel for 30–120 min of reaction time at temperature range of 170–230 °C. As a proton donor H2SO4 was used at concentrations of 1–50 mM. Main hydrolysis products of MCC degradation in HCW were detected as glucose, fructose, levulinic acid, 5-HMF, and furfural. For the quantification of these products, High Performance Liquid Chromatography (HPLC) and Gas Chromatography with Mass Spectroscopy (GC–MS) were used. A ½ fractional factorial design with 2-level of four factors; reaction time, temperature, H2SO4 concentration and applied current with 3 center points were built and responses were statistically analyzed. Response surface methodology was used for process optimization and it was found that introduction of 1A current at 200 °C to the reaction medium increased Total Organic Carbon (TOC) and cellulose conversions to 62 and 81 %, respectively. Moreover, application of current diminished the necessary reaction temperature and time to obtain high TOC and cellulose conversion values and hence decreased the energy required for cellulose hydrolysis to value added chemicals. Applied current had diverse effect on levulinic acid concentration (29.9 %) in the liquid product (230 °C, 120 min., 2 A, 50 mM H2SO4).  相似文献   

6.
The purpose of this study was to determine the kinetics of the dissolution of a uranium residue in ammonium carbonate media. The residue is generated in the production of medical isotopes. The effects of parameters, such as varying peroxide and carbonate concentrations, dissolution time as well as temperature on the extraction rate have been separately studied. Results indicate complete dissolution of the residue at 60 °C, after 30 min, in ammonium carbonate solution enriched with hydrogen peroxide. The yield and rate of uranium extraction were found to increase as a function of both temperature, in the range of 25–60 °C, and hydrogen peroxide concentration. The extraction process was governed by chemical reaction as the activation energy was found to be 45.5 kJ/mol. The order of reaction with respect to uranium concentration was found to be approximately first order.  相似文献   

7.
In this work, we carried out experiments on silicate mineral dissolution using a flow-through reactor from 20 to 400°C at 23 MPa. The dissolution of silicate minerals such as actinolite, diopside, and albite in water may require the breaking of more than one metal?Coxygen bond type. Different metal elements in silicate minerals have different release rates and the dissolution product is often non-stoichiometric. Na, Mg, Fe, and Ca dissolve faster than Si at T < 300°C. At T ?? 300°C, the release rate of Si is higher than that of the other metals. The molar concentration ratios of the dissolving metal Mi versus Si such as Mg/Si, Ca/Si and Al/Si, which are the release ratios in the effluent solutions, are often different from the molar ratios of these elements in the minerals. The results show that the incongruent dissolution of minerals is related to surface chemical modifications. Non-stoichiometric dissolution is caused by the formation of a non-stoichiometric leaching layer at the surface or by the presence of a secondary mineral at the surface. Our experiments indicate that the dissolution of most silicate minerals is close to stoichiometric at 200 and 300°C, e.g., for actinolite and albite at 300°C. The surfaces after reaction with aqueous solutions were investigated using SEM and TEM. At T < 300°C, the mineral surfaces (e.g., for actinolite) after the reaction with water are slightly Si-rich and slightly Fe (and/or Mg, Ca) deficient. In contrast, at T ?? 300°C, the surfaces after reaction with water are slightly Fe-rich and somewhat Si deficient.  相似文献   

8.
Amidated derivatives of monocarboxy cellulose (MCC), the product of cellulose oxidation, containing carboxyl groups only at C-6 position, were prepared and characterised. Two-step way of amidation was based on the esterification of C-6 carboxyls in MCC by reaction with methanol at 60 °C for 72 h and further amino-de-alkoxylation (aminolysis) of the obtained methyl ester with n-alkylamines, hydrazine and hydroxylamine in the N,N-dimethylformamide medium. Purity and substitution degree of the products were monitored by vibration spectroscopic methods (FTIR and FT Raman) and organic elemental analysis. Analytical methods confirmed the preparation of highly or moderately substituted N-alkylamides, hydrazide and hydroxamic acid of MCC.  相似文献   

9.
Fabricating an aqueous ionic liquid (IL) for deconstruction and dissolution of lignocellulose is attractive because addition of water could reduce the cost and viscosity of the solvent and improve the biomass processing, but the solvating power of the IL is usually depressed in the presence of water. In the present study, an aqueous IL consisting of 1-butyl-3-methylimidazolium chloride (BmimCl), water, and lithium chloride was fabricated for efficient deconstruction and dissolution of lignocellulose (bamboo). The dissolution of cell wall components (cellulose, lignin, and hemicelluloses) in the aqueous IL was investigated. The results indicated that the presence of water significantly reduced the solvating power of BmimCl; For example, 11.5 % water decreased the dissolution of bamboo in BmimCl from ~97 to ~53 %. Dissolution of cellulose and lignin was specifically depressed. However, addition of lithium chloride was able to improve the tolerance of BmimCl to water and enhance the deconstruction and dissolution of biomass in BmimCl with high water content. It was found that approximately 80 % bamboo could be dissolved in solvent consisting of 45 wt% BmimCl and 55 wt% LiCl·2H2O (25 wt% overall water content in the solvent). In particular, lignin and hemicelluloses were selectively dissolved by 96 and 92 %, respectively. The undissolved residue was predominantly composed of cellulose (~86 %) with a small amount of lignin (<5 %). BmimCl-LiCl-H2O is a promising and effective solvent system with low cost and viscosity for biomass processing.  相似文献   

10.
All-cellulose composites were prepared by partly dissolving microcrystalline cellulose (MCC) in an 8.0 wt% LiCl/DMAc solution, then regenerating the dissolved portion. Wide-angle X-ray scattering (WAXS) and solid-state 13C NMR spectra were used to characterize molecular packing. The MCC was transformed to relatively slender crystallites of cellulose I in a matrix of paracrystalline and amorphous cellulose. Paracrystalline cellulose was distinguished from amorphous cellulose by a displaced and relatively narrow WAXS peak, by a 4 ppm displacement of the C-4 13C NMR peak, and by values of T2(H) closer to those for crystalline cellulose than disordered polysaccharides. Cellulose II was not formed in any of the composites studied. The ratio of cellulose to solvent was varied, with greatest consequent transformation observed for c < 15%, where c is the weight of cellulose expressed as % of the total weight of cellulose, LiCl and DMAc. The dissolution time was varied between 1 h and 48 h, with only small additional changes achieved by extension beyond 4 h.  相似文献   

11.
Microcrystalline cellulose (MCC) particles were subjected to hydrothermal treatment using an autoclave with temperatures ranging from 200 to 250 °C and reaction times ranging from 20 to 100 min. The structure and chemical composition of the reacted solid phase was analyzed by X-ray diffraction, thermo-gravimetric analysis, FTIR spectroscopy and 13C-NMR spectroscopy. The relative composition of the water-soluble products was determined by one-dimensional 1H-NMR and two-dimensional homo and hetero-nuclear NMR spectroscopy. Within the experimental temperature and treatment time ranges, the crystallinity of the reacted solid phase was found to be mostly dependent on the treatment temperature while the aqueous solution was found to change with both temperature and treatment time. At the maximum temperature employed in this study (250 °C), the solid products are similar to amorphous oxidized carbon with glucose as the main water-soluble product. At lower temperatures the particles are unconverted MCC and the liquid products are primarily levulinic acid, formic acid and acetic acid with smaller quantities of 5-hydroxymethyl-furfural and glucose. Heterogeneous and liquid phase reaction-schemes are proposed to explain the observed solid and water-soluble products as a function of temperature and treatment time.  相似文献   

12.
A Valonia cellulose (NV), a cellulose II derived from NV by mercerization (MV), and a cast cellulose II film (F) were deuterated repeatedly (wetting-drying cycle) in vapor phase at 25°C; the integrated deuteration time amounts to 5 × 105 min. A region C, which cannot be attacked by the exchange reaction, exists in NV and MV, amounting to 80 and 18% in the respective samples. In the case of F, it could not be determined exactly due to the too large scattering of the data. On heating in liquid D2O for 5 or 10 min., OD groups develop within C above 190 and 170°C in NV and MV, respectively. Above 190°C. the exchange is larger in NV than in MV. These OD groups within the pre-existing crystallites begin to disappear after treating with NaOH solution at the concentration at which cellulose begins to be converted to alkali cellulose I. The resistant OD groups developed within the amorphous and intermediate regions are rehydrogenated by the more dilute alkaline solutions.  相似文献   

13.
Direct observations of the heating of microcrystalline cellulose (230 DP) in water at temperatures up to 410 °C and at pressures up to 700 MPa were made with a batch-type microreactor. Cellulose particles were found to dissolve with water over temperatures ranging from 315 to 355 °C at high pressures. Dissolution temperatures depended on water density and decreased from about 350 °C at a water density of 560 kg/m3 to a minimum of around 320 °C at a water density of 850 kg/m3. At densities greater than 850 kg/m3, the dissolution temperatures increased and reached a value of about 347 °C at 980 kg/m3. The cellulose dissolution temperatures were independent of heating rates for values ranging from 10 to 17 °C/s. The low dependence of dissolution temperatures on the heating rates is strong evidence for simultaneous dissolution and reaction of the cellulose. Different phenomena occurred depending on water density. At low densities, particles turned transparent and seemed to dissolve into the aqueous phase from the surface. From 670 to 850 kg/m3, the cellulose particles visibly swelled just before completely collapsing and dissolving into the aqueous phase. The swelling probably increased water accessibility and particle surface area and thus lead to the lower dissolution temperatures observed. From 850 to 1000 kg/m3, the particles required longer times to dissolve and many fine brown-like particles were generated as the particles dissolved. FT-IR spectra of the residues were analyzed. Residues formed from heating cellulose at high densities still retained some cellulose character whereas those as low densities had little cellulose character, especially in the O–H stretching vibration region.  相似文献   

14.
Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.  相似文献   

15.
The structure of microcrystalline cellulose (MCC) made by mild acid hydrolysis from cotton linter, flax fibres and sulphite or kraft cooked wood pulp was studied and compared with the structure of the starting materials. Crystallinities and the length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. The morphological differences were studied by scanning electron microscopy. A model for the changes in microfibrillar structure between native materials, pulp and MCC samples was proposed. The results indicated that from softwood or hardwood pulp, flax cellulose and cotton linter MCC with very similar nanostructures were obtained with small changes in reaction conditions. The crystallinity of MCC samples was 54–65%. The width and the length of the cellulose crystallites increased when MCC was made. For example, between cotton and cotton MCC the width increased from 7.1 nm to 8.8 nm and the length increased from 17.7 nm to 30.4 nm. However, the longest crystallites were found in native spruce wood (35–36 nm).  相似文献   

16.
The morphology and crystalline structure changes of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride [(BMIM)Cl] were investigated by optical microscopy and synchrotron radiation wide-angle X-ray diffraction (WAXD). Neither swelling nor dissolution of cellulose was observed under the melting point of [BMIM]Cl. While the temperature was elevated to 70 °C, the swelling phenomenon of cellulose happened with the interplanar spacing of ( _boxclose_boxclose_boxclose0 1\bar{1}0 ) and (020) planes increased slightly. With the temperature further going up to 80 °C, cellulose was dissolved gradually with the crystallinity (W c,x) and crystalline index (CrI) of cellulose decreased rapidly, which indicated the crystalline structure of cellulose was destroyed completely and transformed into amorphous structure.  相似文献   

17.
The production of cellulosic man made fibres by the viscose process has been known for more than 120 years now, but still some aspects are not sufficiently understood in detail. The carbohydrates in the pulp are exposed to varying conditions during the manufacturing process. In the first production step of steeping, the strong alkaline treatment leads to undesirable loss reactions of the cellulose. In this study, a comprehensive kinetic model was developed for process simulation of cellulose degradation for the fist time comprising primary and secondary peeling, stopping and alkaline hydrolysis. A total chlorine free bleached beech sulfite pulp was treated with 18 % sodium hydroxide at 40, 50 and 60 °C for time periods up to 80 h. The corresponding reaction rates, activation energies and frequency factors for all reaction steps were calculated. The peeling-off reaction was of great significance for the cellulose yield loss, due to a contribution of the secondary peeling after random chain scission. The moderate decrease of the intrinsic viscosity and the changes in molar mass distribution indicated the validity of the assumption. Further, a reduction of the carbonyl and an increase of the carboxyl groups in the cellulose were observed due to the formation of the stable metasaccharinic acid at the reducing ends of the molecules. The fibre morphology was investigated by SEM measurements. Already short alkaline treatment times favored the dissolution of fibril fragments from the fibre surface leading to a smooth fibre surface.  相似文献   

18.
Cellulose is the most abundant natural polymer on the earth, and effective solvents are essential for its wide application. Among various solvents such as alkali/urea or ionic liquids, cations all play a very important role on the cellulose dissolution. In this work, the influence of cation on the cellulose dissolution in alkali/urea via a cooling process was investigated with a combination of MD simulation and experiments, including differential scanning calorimetry (DSC) and NMR diffusometry (PFG-SE NMR). The results of DSC proved that the dissolution of cellulose in both solvents was a process within a temperature range, starting at above 0 °C and completing at low temperature (?5 °C for LiOH/urea and ?20 °C for NaOH/urea), indicating the necessity of low temperature for the cellulose dissolution. Molecular dynamic (MD) simulation suggested that the electrostatic force between OH? and cellulose dominated the inter-molecular interactions. In our findings, Li+ could penetrate closer to cellulose, and displayed stronger electrostatic interaction with the biomacromolecule than Na+, thus possessed a greater “stabilizing” effect on the OH?/cellulose interaction. PFG-SE NMR demonstrated a more significant binding fraction of Li+ than Na+ to cellulose, which was consistent with MD. These results indicated that the direct interactions existed between the cations and cellulose, and Li+ exhibited stronger interaction with cellulose, leading to stronger dissolving power.  相似文献   

19.
Synthesis of maleated pimaric acid (MPA) cellulose esters is first reported in this work. Cellulose esterification was performed by reacting microcrystalline cellulose with monoacid chloride of MPA (MPA-Cl) in presence of pyridine as catalyst and reaction medium. The syntheses were started in a heterogeneous solid–liquid reaction medium, but as the reaction advanced, the reaction mass turned into a homogeneous solution. The effects of MPA-Cl/anhydroglucose unit molar ratio, reaction temperature, and reaction duration on the yield and degree of substitution (DS) of cellulose esters (CEs) were investigated. CEs with DS ranging from 2.6 to 2.8 were achieved at molar ratios of 5.5–6.0 after 12–16 h at 118 °C. The purified products were characterized by elemental analysis, IR and 13C-NMR spectroscopy, and thermogravimetric analysis. CEs are soluble or partially soluble in usual organic solvents, depending on DS. Transparent films were prepared using CE-cyclohexanone solutions.  相似文献   

20.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号