首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the effects of diethanolamine (DEA) in the silver (Ag)/titanium dioxide (TiO2) sol–gel process, sols with and without DEA, and films derived from these sols were prepared. The samples were investigated by X-ray diffraction, transmission electron microscopy, electron diffraction and optical absorption spectra. The results showed that metallic Ag clusters were formed in the sol with DEA and was absent in the sol without DEA. This indicated that DEA worked not only as the stabilizer but also as the reduce agent in Ag/TiO2 sol–gel process. After annealed, Ag metallic nanoparticles were generated in the films derived from both the sols with and without DEA. The particles in the films derived from the sol with DEA were smaller than those from the sol without DEA. This can be ascribed to the limitation of the growth of Ag cluster formed in the sol with DEA during heat treatment. Mechanisms for the formation of metallic Ag in the Ag/TiO2 sols and films were discussed. The effects of DEA in the sols and films were studied in detail.  相似文献   

2.
The InVO4 sol was obtained by a mild hydrothermal treatment (the precursor precipitation solution at 423 K, for 4 h). Novel visible-light activated photocatalytic InVO4–TiO2 thin films were synthesized through a sol–gel dipping method from the composite sol, which was obtained by mixing the low temperature InVO4 sol and TiO2 sol. The photocatalytic activities of the new InVO4–TiO2 thin films under visible light irradiation were investigated by the photocatalytic discoloration of methyl orange aqueous solution. The thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV–Vis absorption spectroscopy (UV–Vis). The results revealed that the InVO4 doped thin films enhanced the methyl orange degradation rate under visible light irradiation, 3.0 wt% InVO4–TiO2 thin films reaching 80.1% after irradiated for 15 h.  相似文献   

3.
Stable sols of TiO2 were synthesized by a non-aqueous sol–gel process using titanium (IV) isopropoxide as precursor. The microstructure, optical and morphological properties of the films obtained by spin-coating from the sol, and annealed at different temperatures, were investigated using scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy and ellipsometry. The crystalline structure of the films was characterized by X-ray diffraction and their photocatalytic activity was evaluated for the oxidation of ethanol in air. The influence of the calcination temperature, pre-heat treatment and the number of layers was studied. Simultaneous thermo-gravimetric and differential thermal analysis measurements were carried out to ascertain the thermal decomposition behavior of the precursors. In order to obtain a higher photoresponse in the visible region, a series of vanadium-, niobium- and tantalum-doped TiO2 catalysts was synthesized by the same sol–gel method. For V doping two different precursors, a vanadium alkoxide and V2O5, were used. The effect on the crystallization and photocatalytic activity of the doped TiO2 films was investigated. Furthermore, to identify the effective composition of the samples, they were characterized by X-ray photoelectron spectroscopy and the surface area of the powders was measured by N2 adsorption. The 10 wt.% doped catalysts exhibit high photocatalytic activity under visible light and among them the best performance was obtained for the sample containing Ta as dopant. The crystallite sizes are closely related to the photocatalytic activity.  相似文献   

4.
TiO2 and MgF2 thin films were prepared by sol–gel processing. Their microstructure was investigated by scanning electron microscopy, X-ray diffraction and ellipsometric porosimetry as a function of the number of coating-firing cycles with different single layer thicknesses. TiO2/MgF2 multilayers were processed in different stacking sequences; the nucleation of the subsequent material was correlated to the underlying crystal structure and the respective film morphology. It was found that dense crystalline MgF2 films on glass can be manufactured by homoepitaxial growth of multiple thin layers. On an underlying TiO2 layer the effect of densification and crystallization is increased. In the reverse film order no such effect could be observed.  相似文献   

5.
The correlation between the textural properties and the photocatalytic activity of nanocrystalline Titanium dioxide (TiO2)-anatase films obtained by sol–gel has been investigated. Mesoporous and mesostructured TiO2-anatase films were prepared using different titanium precursors and Pluronic (F127) and polyethylene glycol hexadecyl ether P5884 (Brij58) surfactants via acid catalysis. Ca(NO3)2 and WCl6 were incorporated to TiO2 sols to investigate the effect of the doping on the photocatalytic behaviour. The microstructure and textural properties were characterised by X-ray diffraction, spectral ellipsometry and transmission electronic microscopy. The photocatalytic properties were evaluated in aqueous solution (methyl orange) and in gas phase (trichloroethylene, sulphide acid and methyl-ethyl-ketone) using multilayer films deposited on glass-slides. TiO2-B-Brij-58 films exhibited the most efficient photocatalytic activity either in aqueous or gas medium. The Ca doping strongly enhances the photocatalytic activity associated with the reduced recombination of electrons and holes in the catalyst.  相似文献   

6.
《Electroanalysis》2006,18(4):379-390
Combining vapor‐surface sol‐gel deposition of titania with alternate adsorption of oppositely charged iron heme proteins provided ultrathin {TiO2/protein}n films with reversible voltammetry extended to 15 TiO2/protein bilayers, more than twice that of more conventional polyion‐protein or nanoparticle‐protein films made by alternate layer‐by‐layer adsorption. Catalytic activity toward O2, H2O2, and NO was also improved significantly compared to the conventionally fabricated films. The method involves vaporization of titanium butoxide into thin films of water, forming porous TiO2 sol‐gel layers. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) were assembled by adsorption alternated with the vapor‐deposited TiO2 layers. Improved electrochemical and catalytic performance may be related to better film permeability leading to better mass transport within the films, as suggested by studies with soluble voltammetric probes, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical and electrocatalytic activity of the films can be controlled by tailoring the amount of water with which the metal alkoxide precursor vapor reacts and the number of bilayers deposited in the assembly.  相似文献   

7.
Multilayered nanostructured TiO2 thin films were prepared by sol–gel and dipping deposition on quartz substrate followed by thermal treatment under reducing atmosphere (20 %H2–80 %Ar). Heat treatment at progressively higher temperatures caused structural, morphological, and optical changes, which were investigated by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, and UV–Vis spectroscopy. The conductivities of the thin films were also measured by 4-point probe method. The XRD results showed that the calcined TiO2 thin films consist of single anatase phase which was completely transformed into rutile phase after heat treatment at 1,000 °C. The grains of films grew by intra-agglomerate densification after heat treatment at higher temperatures. The root mean square roughness of the samples was found to be in the range of 0.58–3.36 nm. The partially reduced TiO2 samples have red-shifted transmittance bands due to new energy band formed by oxygen vacancies. The electrical conductivity of the films was also enhanced after heat treatment in reducing atmosphere.  相似文献   

8.
《Comptes Rendus Chimie》2019,22(5):393-405
In this study, TiO2–ZnO nanostructured films prepared from different Ti/water mole ratios were deposited on glass plates by a sol–gel dip-coating method. The structural and surface properties, adherence, and photoactivity of synthesized TiO2–ZnO coatings in methylene blue degradation were investigated. Among the as-prepared TiO2–ZnO coatings from sols with different Ti/water mole ratios (1, 0.66, 0.5, and 0.4), the highest sol concentration (Ti/water mole ratio of 1) showed the highest methylene blue photodegradation of almost 80% after 400 min of UV irradiation. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and UV-vis diffuse reflectance spectra (DRS) confirmed that at high sol concentrations (Ti/water mole ratios of 1 and 0.66), a mixed phase of anatase and rutile is formed, whereas at a Ti/water mole ratio of 0.5, just pure rutile is formed. In detail, decreasing the sol concentration increases the cracks, degree of agglomeration, and the thickness of coatings. UV-vis DRS studies also confirm that decreasing the sol concentration in synthesized TiO2–ZnO films leads to a shift in the absorption region of the coating to the UV region. Moreover, decreasing the sol concentration declines the coating adherence onto glass plates. TEM images of the TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 revealed the formation of ZnO nanorods around a spherical TiO2, which indicates the presence of strong interaction between TiO2 and ZnO nanoparticles. The TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 was then evaluated at different methylene blue concentrations, pH values, and number of coatings. After five consecutive runs, no significant decrease in the photodegradation efficiency was observed. Scanning electron microscopy (SEM) picture of used coating showed a smooth and stable layer without any detachment. Thermogravimetric analysis (TG) and sonication test confirmed thermal and mechanical stabilities of this coating as well.  相似文献   

9.
The TiO2 powders were synthesized by versatile and low cost sol–gel process using HNO3 and titanium tetra-isopropoxide (volumetric ratio of 4:1) following by the hydrolysis reaction. The powders show the two polymorphs of TiO2: 96 % anatase and 4 % brookite, due to acidic condition (pH = 3). Thin films of titanium oxide were obtained by dip-coating, using the sol–gel of titanium oxide mixed with commercial Degussa P25 into a weight ratio 1:1 or 1:1.5, to enhance the synergistic effect of anatase/rutile ratio aiming at increasing the efficiency of the TiO2 photocatalyst in dyes degradation. The thin film surface (charge and morphology) was controlled by polymer (poly-ethylene glycol) and surfactant (Sodium dodecyl sulphate, Triton X100) addition. The titanium oxide was characterized by particle size analyzer, contact angle measurements, X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The photocatalytic properties of powders and coatings were evaluated based on the degradation efficiency of two reference dyes (methyl orange and methylene blue). The results outline that poly(ethylene glycol) and films morphologies are the most influential factors that affecting the photocatalytic activity.  相似文献   

10.
Titanium dioxide (TiO2) thin films, with and without silver (Ag), were prepared on float glass via sol–gel processing. The float glass substrates were pre-coated with a silica-barrier layer prior to the deposition of TiO2-based thin films. Silver nanoparticle incorporation into the TiO2 matrix was achieved by thermal reduction of Ag ions dissolved in a titanium-n-butoxide (Ti[O(CH2)3CH3]4) based sol during calcination in air at 250, 450 and 650 °C. Thin films were characterized using glancing incidence X-ray diffraction, UV–visible spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The effects of Ag concentration and calcination temperature on microstructure and on chemical and physical properties of the thin films have been reported. The size and chemical state of Ag particles, as well as the phase characteristics of the titania matrix were strongly influenced by Ag concentration and calcination temperature. Results from this study can be utilized in both processing and structure-functional property optimization of sol–gel based Ag-TiO2 thin films by aqueous routes.  相似文献   

11.
In this study, the role of TiO2 MT-150A loading in the polymeric sol was investigated for the synthesis of immobilized TiO2 nanocomposite films on glass substrate using the MT-150A nanoparticles-modified sol–gel method. The nanocomposite film properties were examined using different material characterization techniques including X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, UV–Vis spectrophotometer, Scotch tape test and pencil hardness test. The hydrophilicity of films during UV/Vis irradiation and storage in a dark place were evaluated by a contact angle analyzer. The MT-150A loading had a significant effect on the amount of crystallite phases in the films. However, increasing the MT-150A loading in the sol resulted in an increase in rutile phase content. In addition, increasing MT-150A loading in the sol yielded films with higher hydrophilicity but a concentration of 10–30 g/L MT-150A in the sol was found as the maximum for obtaining films with good adherence on the glass substrate.  相似文献   

12.
We report a novel strategy for incorporation of titanium dioxide (TiO2) particles into poly(methyl methacrylate) (PMMA) to exploit high refractive and transparent organic–inorganic hybrid materials. Formation of TiO2 particles of around 20 nm was conducted within hydrophilic core of block copolymer micelles of poly(methyl methacrylate‐block‐acrylic acid) (PMMA‐b‐PAA) in toluene via sol–gel process from titanium isopropoxide and hydrochloric acid. Subsequently, incorporation of TiO2 particles into PMMA matrix was carried out by casting toluene solution of TiO2 precursor‐loaded copolymer micelles, prepared from PMMA350b‐PAA93 and the precursor of mole ratio Ti4+/carboxyl 4.0, and PMMA. Hybrid films of TiO2/PMMA exhibited high transparency to achieve transmission over 87% at 500 nm at 30 wt % of TiO2 content. The refractive index of resulting hybrid films at 633 nm linearly increased with TiO2 content to attain 1.579 at 30 wt % TiO2, which was 0.1 higher than that of PMMA. Cross‐sectional transmission electron microscope images of TiO2/PMMA hybrid films showed existence of TiO2 clusters less than 100 nm, which were probably formed by aggregation or agglutination of TiO2 particles during a drying process. It was also observed that decomposition temperature of the hybrid films elevated with increasing TiO2 content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Cd-doped TiO2 nanoparticles have been obtained by polyethylene glycol-assisted sol–gel synthesis and characterized by powder X-ray diffraction, energy dispersive X-ray analysis, high-resolution scanning electron microscopy and UV–visible diffuse reflectance, photoluminescence and impedance spectroscopies. Use of polyethylene glycol as templating agent provides club-shaped particles. Doping TiO2 with Cd decreases the average crystallite size and charge transfer resistance, increases the capacitance, and leads to blue emission. Cd-doping enhances the visible light photocatalytic disinfection of bacteria but not dye degradation.  相似文献   

14.
In this study, preparation of Sn and Nb co-doped TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of co-doping content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), field emission SEM (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy (XPS). XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania Rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The prepared co-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue (MB) solution under solar irradiation. Comparison with undoped and Sn or Nb-doped TiO2, codoped TiO2 shows an obviously higher catalytic activity under solar irradiation.  相似文献   

15.
A comparative study of TiO2 powders prepared by sol–gel methods is presented. Titanium tetraisopropoxide was used as the precursor for the sol–gel processes. The effects of the annealing treatment on phase, crystallite size, porosity and photodegradation of dyes (methyl orange and methylene blue) were studied. The phase structure, microstructure and surface properties of the films were characterized by using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The X-ray diffraction was used for crystal phase identification, for the accurate estimation of the anatase–rutile ratio and for the crystallite size evaluation of each polymorph in the samples. It was found that the only TiO2 anatase phase of the synthesized TiO2 develops below 500 °C, between 600 and 800 °C the anatase coexist with rutile and above 800 °C only the rutile phase was found in the samples. Attention has been paid not only to crystal structures, but also to the porosity, the particle size and the photocatalytic properties. However, the annealing temperature was found to have significant influence on the photocatalytic properties. Different TiO2 doctor blade thin films were obtained mixing the sol gel powder (100% anatase) and TiO2 Aldrich with TiO2 Degussa P25. The surfactant (Triton X100 or sodium dodecyl sulfate) affects the packing density of the particles during deposition and the photocatalytic degradation efficiency of the dyes. The photocatalytic degradation kinetics of methyl orange and methylene blue using TiO2 thin film were investigated.  相似文献   

16.
A novel sol–gel technique using the PTA (peroxo titanic acid) sol as precursor for the fabrication of TiO2 photocatalytic thin film is introduced in this paper. The peroxo titanic acid sol was synthesized from titanyl sulfate (TiOSO4), ammonia and peroxide solution (H2O2). The transparent and porous TiO2 thin film was prepared via a sol–gel technique using PTA sol and polyethylene glycol (PEG) as precursor and template, respectively. The TiO2 thin film samples were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometry (UV–vis), X-ray photoelectron spectrum (XPS) and thermogravimetry and differential thermal analysis (TG-DTA) technique. The PTA sol displayed amorphous TiO2 below 100 °C. The anatase phase formed at 200 °C to 700 °C. The crystallinity of anatase phase was improved with increasing temperature. The anatase crystals on the surface of TiO2 film were strip-like, the size being about 100 nm in length and 40 nm in diameter. Addition of PEG to the PTA sol developed porous structures in the film and changed the size and shape of the particles. The surface of the film contained Ti, O and C elements and Na element that diffused into the film from the glass substrate. The photocatalytic performance of TiO2 film was tested for the degradation of 10 mg/L methyl orange. The degradation of methyl orange solution reached 98.9% after irradiated for 180 min under UV light. The porous TiO2 thin film exhibited high photocatalytic activity towards degrading methyl orange.  相似文献   

17.
Ultrafine titanium dioxide (TiO2) nanocrystal has attracted enormous interest due to their unusual quantum and surface effects. Here, we propose a facile route to synthesize ultrafine anatase nanocrystal at room temperature via an aqueous sol–gel method using lactic acid (LA) and acetylacetone (Acac) as double chelators. Transmission electron microscopy (TEM) and size analyzer confirmed that TiO2 nanocrystal in precursor possessed an average size of ~3 nm with a narrow size distribution. Crystal structure characterized by TEM and X-ray diffraction (XRD) indicated that TiO2 nanocrystal to be anatase phase. The results of field emission scanning electron microscopy (FE-SEM) and BET surface area exhibited that TiO2 xerogel powder had mono-dispersed particles size and large BET surface area up to 90 m2/g.  相似文献   

18.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

19.
Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10?12 cm2/W, and the order of 10?6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10?10 esu.  相似文献   

20.
A titanium dioxide sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. The sol was prepared by a process where HCl was added to a gel of hydrated titanium oxide to dissolve it. The resulting aqueous titanic acid solution was heated to form titanium dioxide sol. The effects of preparation parameters were investigated. TiCl4 was slowly added to distilled water at 5°C. Aqueous solution of sodium hydroxide was added to adjust the pH of the system to 8–12. After aging for a period of time, the peptized sol was filtered and sufficiently washed. The filtered cake was repulped in water. Hydrochloric acid was slowly added to the solution with stirring. After condensation reaction and crystallization, a transparent sol with suspended TiO2 was formed. XRD results show that the crystalline phase was anatase. The suspended TiO2 particles were rhombus primary particles with the major axis ca. 20 nm and the minor axis ca. 5 nm. The TiO2 particles prepared at pH 8 had the largest surface area of 141 cm3/g and it was microporous. The compositions of the solution which yielded the smallest suspended TiO2 particles were TiO2:HCl (35% HCl) = 1:1 (molar ratio), concentration of TiO2 = 10%. Hydroxypropyl cellulose with viscosity of 150–400 cps was added as a dispersant. The sol was excellent in dispersibility and long-term stability. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The dip-coating on glass can be less than three times to have one monolayer TiO2. The transparent TiO2 thin film had strong hydrophilicity after being illuminated by UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号