首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The radiation effect on the mixed convection flow of an optically dense viscous fluid adjacent to an isothermal cone embedded in a saturated porous medium with Rosseland diffusion approximation is numerically investigated. The entire regime of the mixed convection is included, as the mixed convection parameter of χ varies from 0 (pure free convection) to 1 (pure forced convection). The transformed nonlinear system of equations is solved by using an implicit finite difference method. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter χ, the cone angle parameter m, the radiation-conduction parameter R d and the surface temperature parameter H. The local Nusselt number decreases initially, reaches a minimum in the intermediate value of χ and then increases gradually. It is apparent that increasing the cone angle parameter m enhances the local Nusselt number. The local Nusselt number is significantly increased for the large values of the radiation-conduction parameter R d and the surface temperature parameter H, i.e., radiation effect becomes pronounced. Received on 25 October 1999  相似文献   

2.
王晓英  闻建龙 《实验力学》2013,28(3):347-351
本文分析了静电雾化锥射流模式下液锥表面静电应力、表面张力应力分布特性,基于应力平衡建立了液锥力学模型,并对流量、荷电电压及针形喷嘴的内半径等参数对液锥结构形态的影响进行了预测。首先设计了针形喷嘴静电雾化实验装置,应用高速摄影技术观测了静电雾化的典型雾化模式和液锥形态演化特性。实验结果表明:锥射流雾化模式仅在一定的荷电电压范围内才会出现;针形喷嘴的流量增加,液锥锥角减小,液锥长度增长;随着荷电电压或针形喷嘴内半径的增加,液锥锥角增大,液锥长度缩短。实验结果与液锥力学模型的预测结果一致。  相似文献   

3.
A new method has been developed for the determination of cone resistance under drained conditions. Numerical methods are used for the solution of the differential equations of plasticity theory for soils and for the determination of the stress states in the soil produced by the penetration of the cone. It is assumed that the stresses produced by the penetration of the cone remain ‘locked in’ the soil and constitute boundary conditions for further penetration. The computation starts with the cone base at the surface and is continued by successively incrementing the depth by a small amount. Charts are given for the computation of cone resistance in sands for various friction angles. The importance of the effect of the shear stresses generated at the surface of the cone and characterized by the interface friction angle, δ, is discussed in detail.  相似文献   

4.
Quasisteady supersonic flow over a flat cone on a plane surface is studied. A formula is derived for the angle through which the flow lines turn at the cone. The results are used to justify the use of two-dimensional simulations of the flow. Peak pressures and total impulses are obtained numerically for various cone angles.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

5.
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5 × 106 m−1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from −12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results.  相似文献   

6.
 The problem of combined heat and mass transfer by natural convection over a permeable cone embedded in a uniform porous medium in the presence of an external magnetic field and internal heat generation or absorption effects is formulated. The cone surface is maintained at either constant temperature and constant concentration or uniform heat and mass fluxes. In addition, the cone surface is assumed permeable in order to allow for possible fluid wall suction or blowing. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved numerically by an implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement between the results is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the temperature and concentration profiles as well as the local Nusselt number and the Sherwood number is illustrated graphically to show special trends of the solutions. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

7.
The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. Received 20 March 1997 and accepted 21 May 1997  相似文献   

8.
A study is made of the asymptotic behavior at long times of initially localized small two-dimensional perturbations of the interface of two fluids in the presence of a tangential discontinuity of the velocity; surface tension is taken into account. The development of one-dimensional perturbations was considered earlier in [1]. The asymptotic behavior of the perturbed region is found, i.e., in the xyt space there is found a cone with apex at the origin such that perturbations tend to infinity with increasing t along rays within the cone, while perturbations tend to zero along the remaining rays. Conditions are found under which the instability of the tangential discontinuity is not absolute, i.e., when these conditions are satisfied, flows with tangential discontinuity of the velocity can take place. These conditions, like the shape of the cone, do not depend on the magnitude of the surface tension.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 12–16, May–June, 1979.  相似文献   

9.
细长锥边界层绊线转捩风洞自由飞试验   总被引:2,自引:1,他引:1  
宋威  蒋增辉  贾区耀 《力学学报》2016,48(6):1301-1307
通过在半锥角θ_c=10°细长锥面上布置一定数量的人工绊线,促使细长锥表面边界层在相应轴向位置上发生层流向湍流转变的固定转捩,采用运动自由度不受约束的风洞自由飞试验技术研究边界层转捩对高超声速细长锥再入体无控自由飞行下的运动特性和气动特性影响规律,并与以往无人工绊线的细长锥风洞自由飞试验结果作对比.试验马赫数Ma=5.0,通过改变风洞前室总压P_0实现两个雷诺数的模拟,以模型长为特征尺寸自由流雷诺数分别为0.84×10~6和1.68×10~6.结果表明:当自由流雷诺数Re=0.84×10~6时,人工绊线尚不足以促使边界层发生转捩,有绊线的细长锥气动特性与无绊线基本一致,动稳定导数大于零;当自由流雷诺数Re=1.68×10~6时,人工绊线促使边界层发生固定转捩,细长锥的动稳定导数小于零,细长锥自由飞行动稳定.  相似文献   

10.
The bending analysis of functionally graded carbon nanotube (CNT) reinforced doubly curved singly ruled truncated rhombic cone is investigated. In this study, a simple C0 isoparametric finite element formulation based on third order shear deformation theory is presented. To characterize the membrane-flexure behavior observed in a CNT reinforced truncated rhombic cone, a displacement field involving higher-order terms in in-plane fields is considered. The proposed kinematics field incorporates for transverse shear deformation and nonlinear variation of the in-plane displacement field through the thickness to predict the overall response of the CNT reinforced truncated rhombic cone in an accurate sense. The material properties of the CNT reinforced truncated rhombic cone are estimated according to the rule of mixture. The present model eliminates the need of shear correction factor and imposed zero-transverse shear strain at upper and lower surface of the truncated rhombic cone. The new feature in present model is simultaneous inclusion of twist curvature in strain field as well as curvature in displacement field that makes it suitable for moderately thick and deep truncated rhombic cone. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The proposed model has been validated with analytical, experimental, and finite element results from the literature. This is first attempt to study bending response of CNT reinforced doubly curved singly ruled truncated rhombic cone. The effect of CNT distribution, boundary condition, loading pattern, and other geometric parameters are also examined.  相似文献   

11.
This paper deals with the study of the laminar free‐convection boundary‐layer flow about a heated and rotating down‐pointing vertical cone in the presence of a transverse magnetic field. Two cases of heat transfer analysis are discussed. These are: (i) the rotating cone with prescribed surface temperature and (ii) the rotating cone with prescribed surface heat flux. By means of similarity transformation, the governing partial differential equations are reduced into highly non‐linear ordinary differential equations. The resulting non‐linear system has been solved analytically using a very efficient technique, namely homotopy analysis method. Expressions for velocity and temperature fields are developed in a series form. The influence of various pertinent parameters is also seen on the velocity and temperature fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The picture of ideal gas flow around cones at zero and low angles of attack has been well studied by using approximate methods [1], and results for high angles of attack have been obtained mainly numerically [2–7]. At high angles of attack it is sensible to examine inviscid flow only up to some generator on the downwind side of the cone at which boundary-layer separation occurs. Hence, the domain where the flow can be considered inviscid yields the main contribution to the magnitude of the aerodynamic forces and the heat fluxes [5, 9]. A picture of the supersonic flow around a pointed elliptical cone is obtained in this paper by the numerical solution of the gasdynamics equations. The whole flow domain is computed at low angles of attack while the solution at high angles is obtained in a domain bounded by some surface of three-dimensional type [10]. The dependence of the flow parameters on the angle of attack is studied when the shock is attached to the cone apex. In contrast to a circular cone, at low angles of attack two spreading lines occur on the surface of an elliptical cone, to which the maximum pressure corresponds. As the angle of attack increases, these lines come together and merge at a certain time. At high angles of attack the flow picture is analogous to a circular cone with a pressure maximum in the plane of symmetry.  相似文献   

13.
Two types of plasma spikes, generated by on-board 60 Hz periodic and pulsed dc electric discharges in front of two slightly different wind tunnel models, were used to demonstrate the non-thermal plasma techniques for shock wave mitigation. The experiments were conducted in a Mach 2.5 wind tunnel. (1) In the periodic discharge case, the results show a transformation of the shock from a well-defined attached shock into a highly curved shock structure, which has increased shock angle and also appears in diffused form. As shown in a sequence with increasing discharge intensity, the shock in front of the model moves upstream to become detached with increasing standoff distance from the model and is eliminated near the peak of the discharge. The power measurements exclude the heating effect as a possible cause of the observed shock wave modification. A theory using a cone model as the shock wave generator is presented to explain the observed plasma effect on shock wave. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow; such a flow deflection modifies the structure of the shock wave generated by the cone model, as shown by the numerical results, from a conic shape to a curved one. The shock front moves upstream with a larger shock angle, matching well with that observed in the experiment. (2) In the pulsed dc discharge case, hollow cone-shaped plasma that envelops the physical spike of a truncated cone model is produced in the discharge; consequently, the original bow shock is modified to a conical shock, equivalent to reinstating the model into a perfect cone and to increase the body aspect ratio by 70%. A significant wave drag reduction in each discharge is inferred from the pressure measurements; at the discharge maximum, the pressure on the frontal surface of the body decreases by more than 30%, the pressure on the cone surface increases by about 5%, whereas the pressure on the cylinder surface remains unchanged. The energy saving from drag reduction is estimated to make up two-thirds of the energy consumed in the electric discharge for the plasma generation. The measurements also show that the plasma effect on the shock structure lasts much longer than the discharge period.
  相似文献   

14.
A numerical experiment has been carried out to determine the decisive factor in the loss of dynamic stability by a cone with a circular conical stabilizer. It is shown that the inertia of the separation zone formed on the lateral surface of the cone can play this role.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 190–191, January–February, 1987.  相似文献   

15.
An experimental investigation of elastic waves produced by the axial collision of strikers with truncated 2024 aluminum cones with apex angles of 0.48, 5.38, 20, and 30 deg was performed. Wave propagation was initiated at the small end of all four cones and at the large end of the 0.48-deg and 5.38-deg cones. The striker consisted of a 1/2-in.-diam steel ball or a soft phenol-impregnated fiber cylinder. In most cases, impact was caused by firing the striker from an air gun at approximately 1300 ips; in an additional series of tests, a steel ball was dropped on the cone. The metamorphosis of the pulse at the surface of the target was recorded using both foil and semiconductor resistance strain gages. Data were obtained for periods ranging from 200 to 500 μsec; this permitted the observation of several reflections from the ends of the specimen. In several instances, cylindrical aluminum rods were glued to the cone to form a composite target; this permitted observation of the initial pulse incident on the conical section both from surface strain gage and sandwiched crystal records. Studies were also conduced to ascertain the stress distribution across the base of the 20-deg cone. Initial pulse records were employed to predict the surface response in the target using the one-dimensional equation of elastic wave propagation in a cone of infinite length. Reasonable agreement between the data and the results of calculations based on the analysis was obtained.  相似文献   

16.
G. A. Al'ev 《Fluid Dynamics》1983,18(2):296-299
The problem of subsonic, transonic, and supersonic separation flow of water past a circular cone of finite length is solved. The water is assumed to be an ideal compressible fluid. A steady flow picture is obtained in a process of stabilization with respect to the time by means of a two-dimensional finite-difference scheme [1]. The dependence of the drag coefficient on the Mach number of the oncoming flow, the distribution of the pressure over the conical surface, and the shape of the free surface formed behind the cone are investigated.  相似文献   

17.
Propagation of waves from a source located on a free surface inside a circular conical horn is studied within the framework of a three-dimensional axisymmetric acoustic approximation. The horn axis is assumed to be orthogonal to the free surface. The influence of the horn geometry on the efficiency of radiation focusing in an arbitrary circular cone is studied. Criteria, objective functions, and control parameters for efficiency estimations and horn optimization are proposed. A method of optimizing the radiating system consisting of the source on the free surface and the horn on the basis of the problem geometry is developed. Geometric parameters ensuring the best focusing of radiation of the source-horn system in a circular cone for an arbitrary transmission angle are determined.  相似文献   

18.
Experimental results are presented for the growth of surface waves on a liquid film that thins as it flows under gravity over the surface of an upright circular cone. The characteristics of the mean film are calculated on the assumption of quasi-parallel flow, and the actual mean thickness found to relate very closely to that found on this basis. The development of the film was found to fall into three phases: the entry zone in which the velocity profile of the film becomes established where no waves are visible, a region of wave growth in which amplitude, wave speed, and wave length all grow, and a final region in which amplitude and wave speed decline as the film thins further although wave length continues to grow. An empirical relationship is presented which expresses the wave number at any point on the cone in terms of the flow rate and a parameter based on the local Reynolds and Weber numbers and cone angle. It was found that for a given flow rate the maximum wave amplitude was reached at a value of wave number of 0·048.  相似文献   

19.
核主泵用双锥度端面流体静压机械密封热弹流效应研究   总被引:5,自引:4,他引:1  
针对核主泵用双锥度端面流体静压型机械密封热弹流效应研究在高压和高速条件下,其密封性能易受端面热弹变形影响的特点,提出了收敛型双锥面流体静压型机械密封,并建立了热-流-固耦合数学模型;通过采用有限差分法求解端面温度和端面流体膜压的控制方程组,采用有限元法求解密封环的热、弹变形,对密封进行了流、固、热耦合分析,研究了热弹变形对密封性能的影响,并对单锥面和双锥面2种流体静压型机械密封的密封性能、温度分布进行了对比研究.结果表明:双锥面密封与单锥面密封相比,不仅稳定性更好,而且端面温度分布更均匀,可靠性更高,但是泄漏率略有上升;在泄漏入口处即高压侧,外锥面锥度的大小对开启力影响较大,而在泄漏出口处即低压侧,内锥面锥度的大小对泄漏率影响较大;内锥面宽度比取0.05左右时能获得较大的刚漏比.  相似文献   

20.
The hydrodynamic problem of a cone entering the water surface obliquely has been analyzed by the three-dimensional (3-D) incompressible velocity potential theory with the fully nonlinear boundary conditions on the moving free surface and body surface boundary. The time stepping method is used in the stretched coordinate system defined as the ratio of the physical system to the distance that the cone has travelled into water. The boundary element method is used to solve the potential at each time step. Both triangular element mesh and quadrilateral element mesh have been used. Discretisation of the body surface and the free surface is applied regularly during the simulation to account for their change and deformation, and data from the old mesh is transferred into the new one through interpolation. Both the dynamic and kinematic free surface boundary conditions are satisfied through the Eulerian form. In particular the free surface elevation and potential variation are traced at a given azimuth of the cylindrical coordinate system, in the direction parallel to the body surface or perpendicular to the free surface to avoid multi-valued function. Detailed convergence study with respect to time step and element size has been undertaken and high accuracy has been achieved. Results for the cone in vertical entry are compared with those obtained from the 2-D axisymmetric method and good agreement is found. Simulations are made for cones of various deadrise angles and different oblique entries and detailed results are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号