首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Using the electrolytical etching method the breakthrough-times (i.e. the time when the two etched cones from both sides of the detector contact) and the resulting track etching rates vt of heavy ion tracks in 8 μm polycarbonate Makrofol KG have been measured. The samples were irradiated at the GSI, Darmstadt (Germany) with gold ions and different fluences at a specific energy of 11.6 MeV/u. All foils were etched in 6 n NaOH at room temperature. Fluctuations of breakthrough-times of single pore foils were analysed. Also the breakthrough-time of multi-pore-foils were measured. The dependence of the mean breakthrough-time on the ion fluence is dicussed. This dependence will be explained by the fluctuations of the breakthrough-time of the pores.  相似文献   

2.
The passage of heavy ions in a track detector polymeric material produces lattice deformations. These deformations may be in the form of latent tracks or may vanish by self annealing in time. Heavy ion irradiation produces modifications in polymers in their relevant electrical, chemical and optical properties in the form of rearrangement of bonding, cross-linking, chain scission, formation of carbon rich clusters and changes in dielectric properties etc. Modification depends on the ion, its energy and fluence and the polymeric material. In the present work, a study of the dielectric response of pristine and heavy ion irradiated Makrofol-KG polycarbonate is carried out. 40 μm thick Makrofol-KG polycarbonate films were irradiated to various fluences with Si8+ ions of 100 MeV energy from Pelletron at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV from Variable Energy Cyclotron Centre, Kolkata. On irradiation with heavy ions dielectric constant (ɛ′) decreases with frequency where ɛ′ increases with fluence for both the ions. Variation of loss factor (tan δ) with frequency for pristine and irradiated with Si ions reveals that tan δ increases as the frequency increases. Tan δ also increases with fluence. While Ne irradiated samples tan δ shows slight variation with frequency as well as with fluence. Tan δ has positive values indicating the dominance of inductive behavior.   相似文献   

3.
S M Farid  A P Sharma 《Pramana》1983,21(5):339-345
Makrofol polycarbonate plastic track detectors have been exposed to 54 132 Xe -ions of energy 1.1 MeV/N from the cyclotron beam. The bulk etch rate and track etch rate are measured for different temperatures and the activation energies are calculated. The maximum etched track length is compared with the theoretically computed range. The critical energy loss is (dE/dx) c =5 MeV cm2 mg−1 for this detector material.  相似文献   

4.
In the present study, the effects of swift heavy ion beam irradiation on the structural, chemical and optical properties of Makrofol solid-state nuclear track detector (SSNTD) were investigated. Makrofol-KG films of 40 μm thickness were irradiated with oxygen beam (O8 + ) with fluences ranging between 1010 ion/cm2 and 1012 ion/cm2. Structural, chemical and optical properties were investigated using X-ray diffraction, FTIR spectroscopy and UV–visible spectroscopy methods. It is observed that the direct and indirect band gaps of Makrofol-KG decrease after the irradiation. The XRD study shows that the crystalline size in the films decreases at higher fluences. The intensity plots of FTIR measurements indicate the degradation of Makrofol at higher fluences. Roughness of the surface increases at higher fluence.  相似文献   

5.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   

6.
The cross sections for the monitor reactions 27Al(p, x)24Na, 27Al(p, x)22Na, and 27Al(p, x)7Be at 12 proton energies, 2605, 1598, 1199, 799, 600, 400, 249, 147.6, 97.2, 66.0, 44.6, and 40.8 MeV, have been determined with 72 × 72-mm square and 10.5-mm-diameter round aluminum foils. The rates of the reactions of the production of 24Na, 22Na, and 7Be in the foils in each irradiation run have been determined by γ spectrometry, whereas the number of protons transmitted through these foils has been determined using calibrated fast current transformers. The cross sections have been determined as the ratios of the corresponding reaction to the average proton fluence.  相似文献   

7.
NiO thin films grown on Si(100) substrates by electron beam evaporation, were sintered at 500 °C and 700 °C. The films were irradiated with 120 MeV Au9+ ions. Irradiation had different effects depending upon the initial microstructure of the films. Irradiation of the films at a fluence of 3 × 1011 ions cm−2 leads to grain growth for the films sintered at 500 °C and grain fragmentation for the films sintered at 700 °C. At still higher fluences of irradiation, grain size in 500 °C sintered film decreased, but the same improved in 700 °C sintered film. Associated with the grain size, texturing of the films was also shown to undergo significant modifications under irradiation.  相似文献   

8.
PbS quantum dots of average size 10 nm are encapsulated in a matrix (polyvinyl alcohol (PVA)) following chemical route. They are irradiated with 160 MeV Ni12+ ion beam with fluences 1012-1013 ions/cm2. Red shift in the absorption response in the optical absorption spectra reveal size enhancement of the quantum dots after irradiation and was confirmed by transmission electron microscopy (TEM). Photoluminescence (PL) study was carried out with excitation wavelength 325 nm on both unirradiated and irradiated samples at different fluences and fluence-dependent surface states and excitonic emission is observed in the PL study. The Huang-Rhys coupling constant decreases significantly after swift heavy ion (SHI) irradiation and shows a decreasing trend with increase in ion fluence.  相似文献   

9.
A wide variety of material modifications in polymers have been studied by using ion irradiation techniques. Extensive research has focused on to Swift Heavy Ions (MeV’s energy), probably because of good controllability and the large penetration length in polymers. High energy ion irradiation tends to damage polymers significantly by electronic excitation and ionization. It may result into the creation of latent tracks and can also cause formation of radicals such as ablation, sputtering, chain scission and intermolecular cross-linking, creation of triple bonds and unsaturated bonds and loss volatile fragments. Polypropylene polymer films of thickness 50 μm were irradiated to the fluences of 1 × 1010, 3 × 1010, 1 × 1011, 3 × 1011, 6 × 1011 and 1 × 1012 ions/cm2 with Si8+ ions of 100 MeV energy from Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV to the fluences of 108, 1010, 1011, 1012 and 1013 ions/cm3 from Variable Energy Cyclotron Centre, Kolkata. Optical modifications were characterized by UV towards the red end of the spectrum with the increase of the fluence. Value of optical band gap E g shows a decreasing trend with ion fluence irradiated with both kinds of ions. Cluster size N, the number of carbon atoms per conjugation length increases with increasing ion dose. Cluster size also increases with the increase of electronic stopping power.   相似文献   

10.
At the Paul Scherrer Institute (PSI, Villigen, Switzerland) a new high-intensity muon beam line with momentum p < 40 MeV/c is currently being commissioned. The beam line is especially designed to serve the needs of the low-energy, polarized positive muon source (LE-μ+) and LE-μ SR spectrometer at PSI. The beam line replaces the existing μ E4 muon decay channel. A large acceptance is accomplished by installing two solenoidal magnetic lenses close to the muon production target E that is hit by the 590-MeV PSI proton beam. The muons are then transported by standard large aperture quadrupoles and bending magnets to the experiment. Several slit systems and an electrostatic separator allow the control of beam shape, momentum spread, and to reduce the background due to beam positrons or electrons. Particle intensities of up to 3.5 × 108 μ+/s and 107 μ/s are expected at 28 MeV/c beam momentum and 1.8 mA proton beam current. This will translate into a LE-μ+ rate of 7,000/s being available at the LE-μ SR spectrometer, thus achieving μ+ fluxes, that are comparable to standard μ SR facilities.  相似文献   

11.
The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.  相似文献   

12.
The features of the latent track in polycarbonate can be analysed by measuring the diffusion constant under ultra high vacuum conditions. Stacks of 30 μm Makrofol KG foils were irradiated with uranium ions of 11.4 MeV/u at the GSI Darmstadt, Germany. We used different fluences from 3·1010 to 5·1011 ions/cm2. The diffusion constant was determined by the time-lag-method [1]. A quadrupole mass filter was used to observe the diffusion of the gas. We measured the diffusion of argon through different foils of each stack at room temperature. In all cases also unirradiated foils were measured. The dependence of the permeability and the diffusion constant on the ion fluence and the energy loss of the ions will be given and indications on the size of latent ion tracks concerning gas diffusion will be discussed.  相似文献   

13.
The paper describes a novel transmission electron microscopy (TEM) experiment with in situ ion irradiation designed to improve and validate a computer model. TEM thin foils of molybdenum were irradiated in situ by 1?MeV Kr ions up to ~0.045 displacements per atom (dpa) at 80°C at three dose rates ?5?×?10?6, 5?×?10?5, and 5?×?10?4?dpa/s – at the Argonne IVEM-Tandem Facility. The low-dose experiments produced visible defect structure in dislocation loops, allowing accurate, quantitative measurements of defect number density and size distribution. Weak beam dark-field plane-view images were used to obtain defect density and size distribution as functions of foil thickness, dose, and dose rate. Diffraction contrast electron tomography was performed to image defect clusters through the foil thickness and measure their depth distribution. A spatially dependent cluster dynamic model was developed explicitly to model the damage by 1?MeV Kr ion irradiation in an Mo thin foil with temporal and spatial dependence of defect distribution. The set of quantitative data of visible defects was used to improve and validate the computer model. It was shown that the thin foil thickness is an important variable in determining the defect distribution. This additional spatial dimension allowed direct comparison between the model and experiments of defect structures. The defect loss to the surfaces in an irradiated thin foil was modeled successfully. TEM with in situ ion irradiation of Mo thin foils was also explicitly designed to compare with neutron irradiation data of the identical material that will be used to validate the model developed for thin foils.  相似文献   

14.
Semiconductor nanoparticle and conducting polymer composite is an interesting class of materials for optoelectronic and photovoltaic device application. We have synthesized a composite of nanocrystalline PbS and conducting polymer MEH-PPV by chemical synthesis and studied the effect of swift heavy ion (SHI) irradiation on the composite material. The irradiation of the composite materials in thin film form is carried out with 120 MeV Si+9 ion beam at fluences from 5×1010 to 1013 ions/cm2. Fluence dependent optical and structural properties have been observed in optical absorption, PL and TEM studies. Reduction of nanoparticle size has been observed after irradiation.  相似文献   

15.
A procedure for and the results from the energy calibration of a ΔE-E scintillation telescope used in experiments performed at the INR to study the nd-breakup reaction are described. The telescope was calibrated using a beam of α particles with an energy of 30 MeV of the U-120 cyclotron (INP). Secondary protons from the 10,11B(α, p) reaction were recorded by the ΔE-E telescope at several recording angles and with the application of different absorbing foils. The calibration results from the ΔE-E telescope were obtained over the interval E p = 10–30 MeV, allowing us to measure the energies of secondary protons in the ndbreakup reaction when the energy of primary neutrons is 20–60 MeV.  相似文献   

16.
A measurement of the double-differential π± production cross-section in proton–carbon, proton–copper and proton–tin collisions in the range of pion momentum 100 MeV/c≤p<800 MeV/c and angle 0.35 rad≤θ<2.15 rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). PACS 13.75.Cs; 13.85.Ni  相似文献   

17.
5 μm niobium foils were irradiated with 25 MeV oxygen ions at 20 K, 33 K and 145 K up to fluences of 1.3 × 1016cm-2 corresponding to a damage rate decrease of 99%. Tc versusresistivity shows a minimum depending on the irradiation temperature. At high fluences and subsequent annealing Tc is enhanced compared to the unirradiated value and the transition is broadened by a factor of about 30.  相似文献   

18.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

19.
Latent damage tracks of energetic40Ar ions (18·56 MeV/u) have been recorded in Lexan polycarbonate detector. Bulk and track-etch parameters are evaluated under successive chemical etching. Our results show a linear correlation between the measured track-etch rate along the track and the corresponding total energy-loss rate and predict a threshold value of 5·0 MeV mg−1 cm2 for track registration. Maximum etchable track lengths of40Ar ions as a function of energies have also been measured and compared with three different sets of theoretical ranges.  相似文献   

20.
The neutron skin effect has been investigated for even isotopes of molybdenum at 25.6 MeV 94 − 100Mo(p, xn) reaction using the geometry-dependent hybrid model of pre-equilibrium nuclear reactions. Here the initial neutron/proton exciton numbers were calculated from the neutron/ proton densities obtained from an effective nucleon–nucleon interaction of the Skyrme type. Initial exciton numbers from different radii of even Mo isotopes were used to obtain the corresponding neutron emission spectra. In this investigation the calculated results are compared with the experimental data as also with each other. The results using central densities in the geometry-dependent hybrid model are in better agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号