首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Spinel LiMn2O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials were successfully synthesized by the citric-acid-assisted sol-gel method with ultrasonic irradiation stirring. The structure and electrochemical performance of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometer, cyclic voltamogram (CV) and the galvanostatic charge-discharge test in detail. XRD shows that all the samples have high phase purity, and the powders are well crystallized. SEM exhibits that LiMn1.4Cr0.2Ni0.4O4 has more uniform cubic-structure morphology than that of LiMn2O4. EDX reveals that a small amount of Mn3+ still exists in LiMn1.4Cr0.2Ni0.4O4. The galvanostatic charge-discharge test indicates that the initial discharge capacities for the LiMn1.4Cr0.2Ni0.4O4 and LiMn2O4 at 0.15 C discharge rates are 130.8 and 130.2 mAh g−1, respectively. After 50 cycles, their capacity are 94.1% and 85.1%, respectively. The CV curve implies that Ni and Cr dual substitutions are beneficial to the reversible intercalation and deintercalation of Li+, and suppress Mn3+ generation at high temperatures and provide improved structural stability.  相似文献   

2.
Two batches of poly-crystalline lithium manganate were prepared by a fuel assisted solution combustion method. LiMn2O4(S) was prepared using starch as the fuel and LiMn2O4(P) was prepared using poly vinyl alcohol (PVA) as the fuel. XRD studies indicated a significant and consistent shift in the 2θ values of all the hkl peaks to higher values in LiMn2O4(P) compared to LiMn2O4(S) indicating a lattice contraction in the former. TG/DTA studies indicated a higher formation temperature (∼25 °C higher) for LiMn2O4(P). The higher formation temperature most likely promotes the oxidation of some Mn3+ to Mn4+ with a lower ionic radius causing a lattice contraction. This hypothesis is confirmed through XPS studies which indicated the presence of a higher fraction of Mn4+ in LiMn2O4(P) than that present in LiMn2O4(S). A crystal shape algorithm was used to generate the crystal habits of lithium manganate from their XRD data leading to an understanding on the exposed hkl planes in these materials. From the atomic arrangement on the exposed hkl planes it is predicted that LiMn2O4(P) would be less prone to manganese dissolution and hence would possess a higher cycle life when compared to LiMn2O4(S).  相似文献   

3.
Multi-color long lasting phosphorescent (LLP) phenomenon in β-Zn3(PO4)2:Mn2+,Zr4+ was systematically investigated. It is found that the red (λEm=616 nm) LLP performance of Mn2+ such as brightness and duration is largely improved, and that the blue (λEm=475 nm) LLP of Zr4+ with lower intensity appears when Zr4+ ions are co-doped into the matrix. The fluorescence, phosphorescence and thermoluminescence (TL) spectra show that Mn2+ ion is solely expected as a luminescent center, while Zr4+ ion not only acts as a luminescent center, but also induces an electron trap (TrapZr) associated with a TL peak at 344 K. The trap depth for TrapZr is 0.25 eV, while that for the intrinsic trap is 0.38 eV, associated with a dominant peak at 385 K for Zn3(PO4)2:Mn2+. The Zr4+-induced trap with suitable depth is responsible for the improvement of the red LLP of Mn2+ ion and the appearance of the blue LLP of Zr4+ ion. The LLP mechanism is also investigated.  相似文献   

4.
Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (X=0.17, 0.25, 0.33, 0.5) compounds are prepared by a simple combustion method. The Rietvelt analysis shows that these compounds could be classified as having the α-NaFeO2 structure. The initial charge-discharge and irreversible capacity increases with the decrease of x in Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. Indeed, Li[Ni0.50Mn0.50]O2 compound shows relatively low initial discharge capacity of 200 mAh/g and large capacity loss during cycling, with Li[Ni0.17Li0.22Mn0.61]O2 and Li[Ni0.25Li0.17Mn0.58]O2 compounds exhibit high initial discharge capacity over 245 mAh/g and stable cycle performance in the voltage range of 4.8 -2.0 V. On the other hand, XANES analysis shows that the oxidation state of Ni ion reversibly changes between Ni2+ and about Ni3+, while the oxidation state of Mn ion sustains Mn4+ during charge-discharge process. This result does not agree with the previously reported ‘electrochemistry model’ of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2, in which Ni ion changes between Ni2+ and NI4+. Based on these results, we modified oxidation-state change of Mn and Ni ion during charge-discharge process.  相似文献   

5.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

6.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

7.
Spinel LiNixMn2−xO4 (x≤0.9) thin films were synthesized by a sol-gel method employing spin-coating. The Ni-doped films were found to maintain cubic structure at low x but to exhibit a phase transition to tetragonal structure for x≥0.6. Such cubic-tetragonal phase transition can be explained in terms of Ni3+(d7) ions with low-spin (t2g6,eg1) configuration occupying the octahedral sites of the compound, thus being subject to the Jahn-Teller effect. By X-ray photoelectron spectroscopy both Ni3+ and Ni2+ ions were detected where Ni2+ is more populated than Ni3+. Optical properties of the LiNixMn2−xO4 films were investigated by spectroscopic ellipsometry in the visible-ultraviolet range. The measured dielectric function spectra mainly consist of broad absorption structures attributed to charge-transfer transitions, O2−(2p)→Mn4+(3d) for 1.9 (t2g) and 2.8-3.0 eV (eg) structures and O2−(2p)→Mn3+(3d) for 2.3 (t2g) and 3.4-3.6 eV (eg) structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as being due to d-d crystal-field transitions within the octahedral Mn3+ ion. In terms of these transitions, the evolution of the optical absorption spectrum of LiMn2O4 by Ni doping could be explained and the related electronic structure parameters were obtained.  相似文献   

8.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

9.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

10.
From photoemission and electron-energy-loss data the following picture of KMnO4, with MnVII (with a formal charge state Mn7+ (3d 0)) tetrahedrally surrounded by four O2–-ions, is deduced: strong covalent bonding between MnVII and O2– leads to a considerable occupation of the Mn-3 d shell. The ground state of the (MnO4)–1 molecule is an orbital and spin singlet as seen by the absence of any multiplet splitting in the Mn core levels. The valence band shows a four peak structure extending form 4 eV to 8 eV below the Fermi energy. The first peak at 4.2 eV has mainly O-2p character. The remaining peaks are of strongly mixed Mn-3d/O-2p character due to the covalent bonding. This mixing decreases with increasing binding energy. The electron energy loss data show a variety of structures between 2 eV and 10 eV independent of the primary electron energy which defines them as dipole allowed charge-transfer transitions. An additional excitation at 1.8 eV decreases quickly in intensity with increasing electron energy which classifies it as a dipole or spin forbidden transition in the compound. This energy is close to the value of 1.6 eV reported for the activation energy observed in electrical transport data. The results are compared to quantum chemical molecular orbital calculations of the (MnO4)–1 molecule.Physics Department, Allahabad University Allahabad 211002, India  相似文献   

11.
The green emission intensity of ZnGa2O4:Ge4+, Li+, Mn2+ excited by the vacuum ultraviolet line of 147 nm reaches 70% of commercial green Zn2SiO4:Mn2+. The vacuum ultraviolet excitation spectra consist of four peaks. In a plasma display test bed filled with Ar and Ne plasma discharged by a radio-frequency generator of 13.6 MHz, ZnGa2O4:Ge4+, Li+, Mn2+ and commercial Zn2SiO4:Mn2+ phosphor screens show a linear increase in luminance with increasing self bias voltages. Increasing gas pressures cause the luminance to increase. Also, on increasing the self bias voltages and the gas pressures, the current densities of ZnGa2O4:Ge4+, Li+, Mn2+ phosphor screens are increased; this is the same behavior as that of the commercial phosphor.  相似文献   

12.
Structural and optical properties of ZnGa2O4:Ge4+ and ZnGa2O4:Ge4+, Li+, Mn2+ phosphors were investigated by using X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL) measurements. The XRD patterns show that Ge-doped ZnGa2O4 has a spinel phase and its lattice constant increases with respect to ZnGa2O4. Emission wavelength shifts from 400 to 360 nm in comparison with ZnGa2O4 when Ge is doped in ZnGa2O4 and a peak related with oxygen defect was observed in Ge-doped ZnGa2O4. The CL luminance of ZnGa2O4:Ge4+, Li+, Mn2+ phosphors is seven times brighter than that of ZnGa2O4:Mn2+. This drastic luminance improvement can be attributed to Ge doping in ZnGa2O4 acting as donor ion and Li doping resulting in increasing conductivity of ZnGa2O4. These results indicate that ZnGa2O4:Ge4+, Li+, Mn2+ phosphors hold promise for potential applications in field-emission display devices with high brightness operating in green spectral regions.  相似文献   

13.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

14.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

15.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

16.
Density functional theory is used to understand the response of the transition metal-oxygen octahedra in LixMn2O4 and LixNi0.5Mn1.5O4 to lithium intercalation and de-intercalation. Electronic structure computations on these compounds for x=0, 0.5 and 1 indicate that the 3d DOS of Mn is almost unaffected to variations in x. On the other hand, the oxygen 2p-DOS and to a lesser extent Ni 3d DOS are found to be sensitive to perturbation. The observations are explained on the grounds of self-regulating response, characteristic of systems having localized d states that communicate with a covalent manifold.  相似文献   

17.
A moderate-temperature method of preparation of the spinel LiMn2O4 was developed around 500 °C. Physical features of the products were identified by X-ray photoelectron spectroscopy, X-ray diffractometry, Raman scattering and FTIR spectroscopy. The electronic conductivity of LiMn2O4 has been studied as a function of annealing temperature. The product LiMn2O4 is identified as a micron-sized powder and analysis of the local environment is in good accordance with the classical structural model of Fd3m space group. LiMn2O4 exhibits an electrical conductivity of 1.9×10−5 S/cm at room temperature with an activation energy of 0.16 eV which corresponds to an electron hopping mechanism between the two charge states of Mn3+ and Mn4+ ions. A first-order phase transition is observed at 292 K.  相似文献   

18.
Calculations of the thermal band gap, ionisation energy and O(2p) valence band width are reported based on defect lattice methods. From these it is estimated that the large polaron is the preferred hole state in α-Al2O3 by about 0.4 eV. Theoretical values for the optical and thermal energy levels of Ti3+ in α-Al2O3 are also reported.  相似文献   

19.
陈立泉  王连忠  车广灿  王刚 《物理学报》1983,32(9):1170-1176
本文在室温到300℃的温度范围内研究了Li4SiO4-Li3VO4和Li4GeO4-Li4SiO4-Li3VO4体系中的离子导电性,发现γII相固溶体Li3+xV1-xSixO4是好的锂离子导体。所研究的成分中Li3.3V0.7Si0.3O4的离子电导率最高,室温下为1×10-5Ω-1·cm-1,在42—192℃的电导激活能为0.36eV,电子电导率可以忽略,因而这是迄今所发现的最好的锂离子导体之一。粗略确定了Li4GeO4-Li4SiO4-Li3VO4三元系中电导率高的范围,发现在Li3.5V0.5Ge0.5O4中Si部分取代Ge可以使电导率进一步提高,Li3.5V0.5Ge0.4Si0.1O4的室温电导率可达1.3×10-5Ω-1·cm-1,电导激活能为0.40eV。 关键词:  相似文献   

20.
The effect of the cation doping on the electronic structure of spinel LiMyMn2−yO4 (M=Cr, Mn, Fe, Co and Ni) has been calculated by first-principles. Our calculation shows that new M-3d bands emerge in the density of states compared with that in LiMn2O4. Simultaneously, the new O-2p bands appear accordingly in almost the same energy range around the Fermi energy owing to the M-3d/O-2p interaction. It is found that the appearance of new O-2p bands in the lower energy position results in a higher intercalation voltage. Consequently, the origin of higher intercalation voltage in LiMyMn2−yO4 can be ascribed to the lower O-2p level introduced by the doping cation M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号