首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The electronic structure and magnetic states for hexagonal-MnFeAs have been studied by a first-principles density functional theory (DFT) calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe and Mn are 1.1 and 3.1μB, respectively, leading to a total magnetization of 4.1μB per formula unit due to the small negative moments of As atoms. The exchange interaction between Fe and Mn layers () is positive and tends to form the ferromagnetic ordering. On the other hand, the exchange interaction at the Fe-As1 layer () is negative while that at the Mn-As2 layer () is positive. The field induced first order magnetic transition at TC is related to the competed exchange interaction in the compound.  相似文献   

2.
3.
4.
Optical and magnetic properties of Co2+-doped ZnO nanocrystals were studied. Optical measurements confirm the incorporation of Co2+ in ZnO lattice with tetrahedral geometry. Optical absorption spectra also reveal the partial bleaching of the excitonic feature attributable to an increase in electron concentration. Magnetization measurements indicate the ferromagnetic ordering in Co2+-doped ZnO nanocrystals with saturation magnetization . No structural changes were observed in lightly doped ZnO nanocrystals. The present investigations are important in obtaining the ferromagnetic Zn1−xCoxO nanocrystals.  相似文献   

5.
We report on comparative investigations of ZnO thin films and nanowires grown on SrTiO3 (STO) single crystal substrates. Using pulsed laser deposition technique, we could grow ZnO thin films with ()- and (0001)-orientations on (100)- and (110)-orientated STO substrates, respectively. ZnO nanowires, grown by vapour condensation method with Au catalyst layers, did not show preferential alignment on either of the STO substrates. When the ZnO(0001)/STO(110) film was used as seed layer, we obtained dense and vertically aligned nanowires. Whereas, few and inclined nanowires were grown on the ZnO()/STO(100) film. We discuss possible origins to cause all the observations.  相似文献   

6.
We report orientation-controllable growth of ZnO thin films and their orientation-dependent electrical characteristics. ZnO thin films were deposited on single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3 substrates using pulsed laser deposition (PLD) at different substrate temperatures (400-800 °C). It was found that the orientation of ZnO films could be controlled by using different substrates of single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3. The a-plane () and c-plane (0 0 0 2) oriented ZnO films are formed on LaAlO3 and SrTiO3, respectively. In both cases, the degree orientation increased with increasing deposition temperature Ts. Both the surface free energy and the degree of lattice mismatch are ascribed to play an important role for the orientation-controllable growth. Further characterization show that the grain size of the films with both orientations increases for a substrate temperature increase (i.e. from Ts = 400 °C to Ts = 800 °C), whereas the electrical properties of ZnO thin films depend upon their crystalline orientation, showing lower electrical resistivity values for a-plane oriented ZnO films.  相似文献   

7.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

8.
The first-principles calculations have been performed to understand the origin of magnetism in undoped GaN thin films. The results show that Ga vacancy, rather than that of N contributes the observed magnetism, and the magnetic moments mainly come from the unpaired 2p electrons at nearest-neighbor N atoms of the Ga vacancy. Calculations and discussions are also extended to bare and passivated GaN nanowires, We find that per Ga vacancy on the surface sites products the total magnetic moment of 1.0  while that inside of the nanowires can lead to the formation of a net moment of 3.0 . The coupling between two Ga vacancies is also studied and we found that the coupling is ferromagnetic coupling. The surface passivation with hydrogen is shown to strongly enhance the ferromagnetism. Our theoretical study not only demonstrates that GaN nanowire can be magnetic even without transition-metal doping, but also suggests that introducing Ga vacancy is a natural and an effective way to fabricate low-dimensional magnetic GaN nanostructures.  相似文献   

9.
10.
ZnO thin films were prepared by reactive RF magnetron sputtering at various deposition temperatures. They were annealed in oxygen ambient at various annealing temperatures. The microstructures and photoluminescence characteristics of ZnO films were investigated. The grain size of the ZnO thin film that was deposited at room temperature (RT) after annealing exceeded that of the film that was deposited at . Excess Zn atoms were considered to be present in the ZnO film that was deposited at RT, so the film was non-stoichiometric ZnO. No visible emission of either of the ZnO films deposited at the two temperatures was observed before annealing. Following annealing at high temperature, the green emission from the ZnO film that was deposited at RT was stronger than that of the film that was deposited at . The relationship between the non-stoichiometry of the thin film and the visible emission was discussed. The luminescent centers that correspond to green emission are defects; the concentration of defects was higher in the ZnO thin film that was deposited at RT than in the film that was deposited at .  相似文献   

11.
Second harmonic generation (SHG) studies of fluorine-doped zinc oxide (ZnO:F) thin films deposited on soda-lime glass substrates from an aged solution in conjunction with zinc pentanedionate, using the chemical spray deposition technique were carried out. The and independent tensorial components of the quadratic nonlinear optical susceptibility of the ZnO:F thin films were evaluated. Scanning electron microscopy and X-ray diffraction investigations revealed a homogeneous distribution of nanoparticles of similar size and morphology for various samples deposited at different substrate temperatures (ranging from 400 to 525 °C). The SHG-technique revealed a clear dependence of the nonlinear optical response with the deposition temperature. Typical optical transmittance and photoluminescence (PL) studies were also performed, from which a bandgap (Eg) of 3.3 eV was evaluated in films deposited under optimal conditions of conductivity and transmittance.  相似文献   

12.
The Kondo lattice model describes a lattice of localized spins Si interacting with the conduction electrons via a local exchange coupling J. Assuming a ferromagnetic Hund's rule coupling J>0, the model can be used to describe some itinerant magnetocaloric materials such as Gd(SixGe1-x)4, La(Fe1-xSix)13, and LaCa1-xMnxO3, which are important for magnetic refrigeration near room temperature. The localized magnetic moments are described in the model Hamiltonian by spin operators, and the conduction electrons by fermionic operators. To study the magnetocaloric effect, a uniform external magnetic field is added through a Zeeman term. By averaging the fermionic degrees of freedom, one obtains an indirect exchange coupling between spins at sites i and j, which corresponds to the RKKY interaction. The self-consistent mean value is evaluated in the effective Heisenberg Hamiltonian within the random phase approximation (RPA). The conduction electron magnetization for a given value of is obtained from the corresponding Green's functions through the equation of motion method. The pressure and doping dependence of the Curie temperature are taken into account in the evaluation of . The magnetocaloric effect is characterized by the isothermal entropy change ΔS and the adiabatic temperature change ΔTad upon magnetic field variations in the neighborhood of the ferromagnetic phase transition. The results are obtained for and compared to measurements with Gd compounds.  相似文献   

13.
Using transmission electron microscopy, a new nano-phase structure of Zn0.75Ox induced by Zn-vacancy has been discovered to grow on wurtzite ZnO nanobelts. The superstructure grows epitaxial from the surface of the wurtzite ZnO nanobelts and can be fitted as an orthorhombic structure, with lattice parameters a′=2a, and c′=c, where a and c are the lattice parameters of ZnO. The superstructured phase is resulted from high-density Zn vacancies orderly distributed in the ZnO matrix. This study provides direct observation about the existence of Zn-vacancies in ZnO.  相似文献   

14.
ZnO films are hydrothermally grown on ZnO-buffered c-plane sapphire substrates at a low temperature of 70 °C. A radio-frequency (RF) reactive magnetron sputtering has been used to grow the ZnO buffer layers. X-ray diffraction, scanning electron microscopy, and room temperature photoluminescence are carried out to characterize the structure, morphology and optical property of the films. It is found that the films are stress-free. The epitaxial relationship between the ZnO film and the c-plane sapphire substrate is found to be ZnO (0 0 0 1)||Al2O3 (0 0 0 1) in the surface normal and in plane. Sapphire treatment, as such acid etching, nitridation, and oxidation are found to influence the nucleation of the film growth, and the buffer layers determine the crystalline quality of the ZnO films. The maximum PL quantum efficiency of ZnO films grown with hydrothermal method is found to be about 80% of single-crystal ZnO.  相似文献   

15.
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nm wavelength region were measured. Optical constants (complex refractive index ) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants , absorption coefficients α as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nm or less.  相似文献   

16.
17.
High quality epitaxial ZnO films were grown on c-Al2O3 substrates with Cr2O3 buffer layer by plasma-assisted molecular beam epitaxy (P-MBE). The hexagonal crystalline Cr2O3 layer was formed by oxidation of the Cr-metal layer deposited on the c-Al2O3 substrate using oxygen plasma. The epitaxial relationship was determined to be ZnO//Cr2O3//Cr//Al2O3 and ZnO//Cr2O3//[0 0 1]Cr//Al2O3. The Cr2O3 buffer layer was very effective in improving the surface morphology and crystal quality of the ZnO films. The photoluminescence spectrum showed the strong near band-edge emissions with the weak deep-level emission, which implies high optical quality of the ZnO films grown on the Cr2O3 buffer.  相似文献   

18.
Zn-Mn-O semiconductor crystallites with nominal manganese concentration x=0.01, 0.04 and 0.10 were synthesized by a solid state reaction method using oxalate precursors. A sintering procedure was carried out in air at 500 and 900  °C. The samples were investigated by X-ray diffraction, magnetization measurements and electron paramagnetic resonance. X-ray diffraction spectra reveal that the dominant crystal phase in the Zn-Mn-O system corresponds to the wurtzite structure of ZnO. Room temperature ferromagnetism is observed in Zn-Mn-O samples with manganese concentrations x=0.01 and 0.04 sintered at low temperature (500  °C). Saturation magnetization in the x=0.01 sample is found to be at . The ferromagnetic phase seems to be developed by Zn diffusion into Mn-oxide grains.  相似文献   

19.
The recent observation at the Tevatron of (uub and ddb) baryons within 2 MeV of the predicted Σb-Λb splitting and of baryons at the Tevatron within a few mega electron volts (MeV) of predictions has provided strong confirmation for a theoretical approach based on modeling the color hyperfine interaction. The prediction of  = 5790-5800 MeV is reviewed and similar methods used to predict the masses of the excited states and . The main source of uncertainty is the method used to estimate the mass difference mb-mc from known hadrons. We verify that corrections due to the details of the interquark potential and to Ξb- mixing are small. For S-wave qqb states we predict , and . For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict , and . Results are compared with those of other recent approaches.  相似文献   

20.
Possible short and semi-short representations for and superconformal symmetry in four dimensions are discussed. For the well known short supermultiplets whose lowest dimension conformal primary operators correspond to -BPS or -BPS states and are scalar fields belonging to the SU(4) R-symmetry representations [0,p,0] and [q,p,q] and having scale dimension Δ=p and Δ=2q+p, respectively, are recovered. The representation content of semi-short multiplets, which arise at the unitarity threshold for long multiplets, is discussed. It is shown how, at the unitarity threshold, a long multiplet can be decomposed into four semi-short multiplets. If the conformal primary state is spinless one of these becomes a short multiplet. For a -BPS multiplet need not have a protected dimension unless the primary state belongs to a [1,p,1] representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号