首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

2.
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H0>3.8275, H0 is the magnetic field amplitude, the compensation effect does not appear in the system.  相似文献   

3.
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature Tabs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i1, i2, i3) phases, and three coexistence or mixed phase regions, namely i1+p, i2+p and i3+p mixed phases that strongly depend on interaction parameters.  相似文献   

4.
The nonequilibrium or dynamic phase transitions are studied, within a mean-field approach, in the kinetic Ising model on a two-layer square lattice consisting of spin- 1/2 ions in the presence of a time varying (sinusoidal) magnetic field has been studied by using Glauber-type stochastic dynamics. The dynamic equations of motion are obtained in terms of the intralayer coupling constants J1 and J2 for the first and second layer, respectively, and interlayer coupling constant J3 between these two layers. The nature (first- or second-order) of the transitions is characterized by investigating the behavior of the thermal variations of the dynamic order parameters. The dynamic phase transitions are obtained and the dynamic phase diagrams are constructed in the plane of the reduced temperature versus the amplitude of the magnetic field and found fourteen fundamental types of phase diagrams. Phase diagrams exhibit one, two or three dynamic tricritical points for various values of J2/|J1| and J3/|J1|. Besides the paramagnetic (p), ferromagnetic (f) and compensated (c) phases, there were the f+c,f+sf,c+sf,af+p,m+p,f+m and c+af, where the af, sf and m are the antiferromagnetic, surface ferromagnetic and mixed phases respectively. Coexistence phase regions also exist in the system.  相似文献   

5.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

6.
We extend our recent paper [M. Keskin, O. Canko, M. Erta?, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume–Emery–Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f2) phases, and the f2+d, f2+fq, fq+d, f2+f1+fq and f2+fq+d, where f1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.  相似文献   

7.
We study, within a mean-field approach, the stationary states of the kinetic Blume–Emery–Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.  相似文献   

8.
Phase diagrams have been produced and critical exponents calculated for a Blume-Emery-Griffiths system with competing biquadratic and crystal-field interactions with uniform ferromagnetic bilinear interactions. This competition directly effects the clustering and density of nonmagnetic impurities. These results have been produced using renormalization-group methods with a hierarchical lattice. A series of planes of constant, repulsive biquadratic coupling have been probed while varying the temperature and concentration of annealed vacancies in the system. The sinks have been analyzed and interpreted, and critical exponents calculated for the higher order transitions.  相似文献   

9.
10.
Bayram Deviren  Osman Canko 《Physica A》2009,388(9):1835-1848
The magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model with a crystal field in a longitudinal magnetic field on the honeycomb (z=3) and square lattice (z=4) are studied by using the effective-field theory with correlations. The ground state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice and total magnetizations, and present the phase diagrams in the (Δ/|J|, ) plane. The phase diagrams have one, two or even three compensation temperatures depending on the values of the crystal-field interaction. Moreover, the susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field.  相似文献   

11.
12.
The magnetic properties of the ternary system ABC consisting of spins , S=1, and are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q?3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.  相似文献   

13.
An Ising model with ferromagnetic nearest-neighbor interactions J1 (J1>0) and random next-nearest-neighbor interactions [+J2 with probability p and −J2 with probability (1−p); J2>0] is studied within the framework of an effective-field theory based on the differential-operator technique. The order parameters are calculated, considering finite clusters with n=1,2, and 4 spins, using the standard approximation of neglecting correlations. A phase diagram is obtained in the plane temperature versus p, for the particular case J1=J2, showing both superantiferromagnetic (low p) and ferromagnetic (higher values of p) orderings at low temperatures.  相似文献   

14.
The phase diagram of the Ising model in the presence of nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions on a square lattice is studied within the framework of the differential operator technique. The Hamiltonian is solved by effective-field theory in finite cluster (we have chosen N=4 spins). We have proposed a functional for the free energy (similar to Landau expansion) to obtain the phase diagram in the (T,α) space (α=J2/J1), where the transition line from the superantiferromagnetic (SAF) to the paramagnetic (P) phase is of first-order in the range 1/2<α<0.95 in contrast to previous study of CVM (Cluster Variational Method) that predict first-order transition for α=1.0. Our results for α=1.0 are in accordance with MC (Monte Carlo) simulations, that predict a second-order transition.  相似文献   

15.
In this work we present the first exact solution of a system of interacting particles with phase transitions of order higher than two. The presented analytical derivation shows that the Ising model on the Cayley tree exhibits a line of third order phase transition points, between temperatures and , and a line of fourth order phase transitions between TBP and , where kB is the Boltzmann constant, and J is the nearest-neighbor interaction parameter.  相似文献   

16.
The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior.  相似文献   

17.
We derive the high temperature series expansions for the two relaxation times of the single spin-flip kinetic Ising model on the square lattice. The series for the linear relaxation time l is obtained with 20 non-trivial terms, and the analysis yields 2.183±0.005 as the value of the critical exponent l , which is equal to the dynamical critical exponentz in the two-dimensional case. For the non-linear relaxation time we obtain 15 non-trivial terms, and the analysis leads to the results nl = 2.08 ± 0.07. The scaling relation l nl = ( being the exponent of the order parameter) seems to be fulfilled, though the error bars of nl are still quite substantial. In addition, we obtain the series expansion of the linear relaxation time on the honeycomb lattice with 22 non-trivial terms. The result for the critical exponent is close to the value obtained on the square lattice, which is expected from universality.  相似文献   

18.
In this study, the sound attenuation coefficient of a spin- metamagnetic Ising system is calculated by the method of thermodynamics of irreversible processes. The behavior of sound attenuation near the phase transition temperatures is analyzed according to various values of phenomenological rate coefficients (γij). For all γm and γs values it is found that sound attenuation peaks occur below TN(H) and depend on frequency ω and the value of the off-diagonal rate coefficient γ. On the other hand, the critical behavior of the sound attenuation in the hydrodynamic regime is obtained analytically via the critical exponents. Moreover, the behavior of the sound attenuation as a function of frequency is also investigated and ω2 dependence is observed for the attenuation coefficient. These results are in a good agreement with ultrasonic investigations of magnetic systems.  相似文献   

19.
We investigate the finite size corrections to the equilibrium magnetization of an Ising model on a random graph with N nodes and Nγ edges, with 1<γ≤2. By conveniently rescaling the coupling constant, the free energy is made extensive. As expected, the system displays a phase transition of the mean-field type for all the considered values of γ at the transition temperature of the fully connected Curie-Weiss model. Finite size corrections are investigated for different values of the parameter γ, using two different approaches: a replica based finite N expansion, and a cavity method. Numerical simulations are compared with theoretical predictions. The cavity based analysis is shown to agree better with numerics.  相似文献   

20.
Using Wang-Landau entropic sampling we study the Ising model in the framework of microcanonical ensemble (fixed magnetization). We are working for lattice size up to 1500×1500 in two dimensions and 100×100×100 in three dimensions. As we approach the coexistence curve from inside, varying temperature and keeping the magnetization constant, a first-order phase transition takes place for a temperature near the coexistence curve if the lattice size is large enough. We analyze various features of this transition as well as the scaling behavior of characteristic quantities and we compare our numerical results with existing theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号