首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collisions and subsequent decays of higher dimensional branes leave behind three-dimensional branes and anti-branes, one of which could play the rôle of our universe. This process also leads to the production of one-dimensional branes and anti-branes, however their number is expected to be suppressed. Brane collisions may also lead to the formation of bound states of branes. Their existence does not alter this result, it just allows for the existence of one-dimensional branes captured within the three-dimensional ones.  相似文献   

2.
We review the General Relativistic model of a (quasi) point-like particle represented by a massive shell of neutral matter which has vanishing total energy in the small-volume limit. We then show that, by assuming a Generalised Uncertainty Principle, which implies the existence of a minimum length of the order of the Planck scale, the total energy instead remains finite and equal to the shell's proper mass both for very heavy and very light particles. This suggests that the quantum structure of space–time might be related to the classical Equivalence Principle and possible implications for the late stage of evaporating black holes are briefly mentioned.  相似文献   

3.
Since there are quantization ambiguities in constructing the Hamiltonian constraint operator in isotropic loop quantum cosmology, it is crucial to check whether the key features of loop quantum cosmology are robust against the ambiguities. In this Letter, we quantize the Lorentz term of the gravitational Hamiltonian constraint in the spatially flat FRW model by two approaches different from that of the Euclidean term. One of the approaches is very similar to the treatment of the Lorentz part of Hamiltonian in loop quantum gravity and hence inherits more features from the full theory. Two symmetric Hamiltonian constraint operators are constructed respectively in the improved scheme. Both of them are shown to have the correct classical limit by the semiclassical analysis. In the loop quantum cosmological model with a massless scalar field, the effective Hamiltonians and Friedmann equations are derived. It turns out that the classical big bang is again replaced by a quantum bounce in both cases. Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum gravity effect.  相似文献   

4.
Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine—as expected from the semiclassical limit of spin foam models—then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus.  相似文献   

5.
Jing Guo 《Physics letters. A》2008,372(36):5799-5803
The classical ensemble method is used to study the dynamic process of the 1D helium interacting with intense laser pulses. Probabilities of double-ionization of helium in intense laser fields are calculated by the symplectic method. The wavelength dependence of double ionization in He is investigated. The non-sequential double ionization (NSDI) is observed in classical simulations at the laser wavelength of 532 nm, 780 nm and 1024 nm, respectively, while the sequential double ionization (SDI) is the dominant process at the laser wavelength of 248 nm. The pulse duration dependence on NSDI is also studied and the result is in agreement with the corresponding experimental results qualitatively.  相似文献   

6.
The Bianchi IX cosmological model is analyzed in a generalized uncertainty principle framework. The Arnowitt–Deser–Misner reduction of the dynamics is performed and a time-coordinate, namely the volume of the Universe, naturally arises. Such a variable is treated in the ordinary way while the anisotropies (the physical degrees of freedom) are described by a deformed Heisenberg algebra. The analysis of the model (passing through Bianchi I and II) is performed at classical level by studying the modifications induced on the symplectic geometry by the deformed algebra. We show that the Universe cannot isotropize because of the deformed Kasner dynamics, the triangular allowed domain is asymptotically stationary with respect to the particle (Universe) and its bounces against the walls are not interrupted by the deformed effects. Furthermore, no reflection law can be in general obtained since the Bianchi II model is no longer analytically integrable. This way, the deformed Mixmaster Universe can be still considered as a chaotic system.  相似文献   

7.
Here we shall find the Green’s function of the difference equation of loop quantum cosmology. To illustrate how to use it, we shall obtain an iterative solution for closed model and evaluate its corresponding Bohmian trajectory.  相似文献   

8.
We derive explicit semiclassical quantisation conditions for the Dirac and Pauli equations. We show that the spin degree of freedom yields a contribution which is of the same order of magnitude as the Maslov correction in Einstein-Brillouin-Keller quantisation. In order to obtain this result a generalisation of the notion of integrability for a certain skew product flow of classical translational dynamics and classical spin precession has to be derived. Among the examples discussed is the relativistic Kepler problem with Thomas precession, whose treatment sheds some light on the amazing success of Sommerfeld’s theory of fine structure [Ann. Phys. (Leipzig) 51 (1916) 1].  相似文献   

9.
10.
A profound quantum-gravitational effect of space–time dimension running with respect to the size of space–time region has been discovered a few years ago through the numerical simulations of lattice quantum gravity in the framework of causal dynamical triangulation [hep-th/0505113] as well as in renormalization group approach to quantum gravity [hep-th/0508202]. Unfortunately, along these approaches the interpretation and the physical meaning of the effective change of dimension at shorter scales is not clear. The aim of this Letter is twofold. First, we find that box-counting dimension in face of finite resolution of space–time (generally implied by quantum gravity) shows a simple way how both the qualitative and the quantitative features of this effect can be understood. Second, considering two most interesting cases of random and holographic fluctuations of the background space, we find that it is random fluctuations that gives running dimension resulting in modification of Newton's inverse square law in a perfect agreement with the modification coming from one-loop gravitational radiative corrections.  相似文献   

11.
In this paper we propose a model of electricity market based on the forward rate dynamics described by a diffusion with jumps as a generalization of the classical diffusion approach. We consider jump components resulting from a coupled continuous-time random walk (CTRW) with jump lengths proportional to the corresponding inter-jump time intervals. In the framework of the model we derive a formula for the EURO-price of a standard European call option, showing applicability of CTRW processes for pricing of financial instruments. The result, obtained by an advance theory of semimartingales, is an essential extension of the pricing formula derived in the classical diffusion model of the forward rate dynamics. It indicates an influence of both, the continuous and the jump parts of the forward rate process on the option price.  相似文献   

12.
The dual picture of quantum geometry provided by a spin network state is discussed. From this perspective, we introduce a new operator in Loop Quantum Gravity—the length operator. We describe its quantum geometrical meaning and derive some of its properties. In particular we show that the operator has a discrete spectrum and is diagonalized by appropriate superpositions of spin network states. A series of eigenstates and eigenvalues is presented and an explicit check of its semiclassical properties is discussed.  相似文献   

13.
Subir Ghosh 《Physics letters. A》2009,373(14):1212-1217
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].  相似文献   

14.
We study the classical and quantum cosmology of a 4 + 1-dimensional space-time with a non-zero cosmological constant coupled to a self-interacting massive spinor field. We consider a spatially flat Robertson-Walker universe with the usual scale factor R (t) and an internal scale factor a (t) associated with the extra dimension. For a free spinor field the resulting equations admit exact solutions, whereas for a self-interacting spinor field one should resort to a numerical method for exhibiting their behavior. These solutions give rise to a degenerate metric and exhibit signature transition from a Euclidean to a Lorentzian domain. Such transitions suggest a compactification mechanism for the internal and external scale factors such that a ∼ R−1 in the Lorentzian region. The corresponding quantum cosmology and the ensuing Wheeler-DeWitt equation have exact solutions in the mini-superspace when the spinor field is free, leading to wavepackets undergoing signature change. The question of stabilization of the extra dimension is also discussed.  相似文献   

15.
Paramagnetic particles in a liquid above a solid dynamically self-assemble into two-dimensional (2D) viscoelastic clusters in a processing magnetic field if the precession angle exceeds the magic angle. Hexagonal clusters rotate with a frequency proportional to the precession frequency of the magnetic field. The rotation is explained by viscoelastic shear waves excited in the clusters that can be visualized slightly above the magic angle. The cluster rotation and the visualization of viscoelastic modes are independent techniques to probe the rheological properties of the cluster. We find agreement between both techniques when determining the 2D cluster viscosity eta(c) approximately 10(-11) N s/m.  相似文献   

16.
17.
Recently, the Heisenberg's uncertainty principle has been extended to incorporate the existence of a large (cut-off) length scale in de Sitter or anti-de Sitter space, and the Hawking temperatures of the Schwarzshild–(anti) de Sitter black holes have been reproduced by using the extended uncertainty principle. I generalize the extended uncertainty to the case with an absolute minimum length and compute its modification to the Hawking temperature. I obtain a general trend that the generalized uncertainty principle due to the absolute minimum length “always” increases the Hawking temperature, implying “faster” decay, which is in conformity with the result in the asymptotically flat space. I also revisit the black hole-string phase transition, in the context of the generalized uncertainty principle.  相似文献   

18.
We show that infinite variety of Poincaré bialgebras with nontrivial classicalr-matrices generate nonsymmetric nonlinear composition laws for the fourmomenta. We also present the problem of lifting the Poincaré bialgebras to quantum Poincaré groups by using e.g. Drinfeld twist, what permits to provide the nonlinear composition law in any order of dimensionfull deformation parameterλ (from physical reasons we can putλ=λ p whereλ p is the Planck length). The second infinite variety of composition laws for fourmomentum is obtained by nonlinear change of basis in Poincaré algebra, which can be performed for any choice of coalgebraic sector, with classical or quantum coproduct. In last Section we propose some modification of Hopf algebra scheme with Casimir-dependent deformation parameter, which can help to resolve the problem of consistent passage to macroscopic classical limit. Presented at the 11th Colloquium “Quantum Groups and Integrable Systems”, Prague, 20–22 June 2002. Supported by KBN grant 5PO3B05620  相似文献   

19.
The purpose of the present article, following “Mach’s principle” (the main elements of which have contributed to the foundations of general relativity) is to propose a new (non-local) interpretation of the inertial interaction. We then suggest that the inertial interaction can be correctly described by the topological field theory proposed by Witten in 1988. In such a context, the instantaneous propagation and the infinite range of the inertial interaction might be explained in terms of the topological amplitude connected with the singular zero size gravitational instanton corresponding to the Initial Singularity of space-time.  相似文献   

20.
The properties of dynamical solitons (magnon droplets) in the classical, two-dimensional anisotropic Heisenberg model with easy-axis exchange anisotropy are studied. The solution of the Landau-Lifshitz equation in the continuum limit for the soliton with topological charge q = 1 is obtained numerically using a shooting method. We analized a wide range of the anisotropy parameter and our results are in good agreement with results obtained from spin dynamics simulations. The dependence of an internal precession frequency of the soliton on both the anisotropy parameter and the radius of the soliton is also investigated. Finally, the limits of applicability of the continuum approach are discussed. Received 22 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号