首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phase diagram of the Ising model in the presence of nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions on a square lattice is studied within the framework of the differential operator technique. The Hamiltonian is solved by effective-field theory in finite cluster (we have chosen N=4 spins). We have proposed a functional for the free energy (similar to Landau expansion) to obtain the phase diagram in the (T,α) space (α=J2/J1), where the transition line from the superantiferromagnetic (SAF) to the paramagnetic (P) phase is of first-order in the range 1/2<α<0.95 in contrast to previous study of CVM (Cluster Variational Method) that predict first-order transition for α=1.0. Our results for α=1.0 are in accordance with MC (Monte Carlo) simulations, that predict a second-order transition.  相似文献   

2.
A linear cluster mean-field approximation is used to study the magnetic properties of the Ising ferromagnetic/antiferromagnetic superlattice, which is composed of a spin-1/2 ferromagnetic monolayer and a spin-1 antiferromagnetic monolayer with a single-ion anisotropy alternatively. By using the transfer matrix method, we calculate the magnetization and the initial magnetic susceptibility as functions of temperature for different interlayer coupling, single-ion anisotropy. We summarize the changing behaviors of the spin structure in ferromagnetic and antiferromagnetic layers and the characteristics of the corresponding magnetic susceptibilities, give the transition temperature as a function of the interlayer exchange coupling for different single-ion anisotropy, and analyze the features of the magnetization and the magnetic susceptibility.  相似文献   

3.
In this work we present the first exact solution of a system of interacting particles with phase transitions of order higher than two. The presented analytical derivation shows that the Ising model on the Cayley tree exhibits a line of third order phase transition points, between temperatures and , and a line of fourth order phase transitions between TBP and , where kB is the Boltzmann constant, and J is the nearest-neighbor interaction parameter.  相似文献   

4.
We have found an exact phase diagram of the Potts model with competing nearest neighbor and next nearest neighbor interactions on the Bethe lattice of order two. The diagram consists of five phases: ferromagnetic, paramagnetic, modulated, antiphase and paramodulated, all meeting at the multicritical point . We report on a new phase which we denote as paramodulated, found at low temperatures and characterized by zero average magnetization lying inside the modulated phase. Such a phase, inherent in the Potts model has no analogues in the Ising setting.  相似文献   

5.
We study two types of generalized Baxter–Wu models, by means of transfer-matrix and Monte Carlo techniques. The first generalization allows for different couplings in the up- and down-triangles, and the second generalization is to a q-state spin model with three-spin interactions. Both generalizations lead to self-dual models, so that the probable locations of the phase transitions follow. Our numerical analysis confirms that phase transitions occur at the self-dual points. For both generalizations of the Baxter–Wu model, the phase transitions appear to be discontinuous.  相似文献   

6.
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was L=20-120 and the concentration of diluted sites q=0.1,0.2,0.3. Its pure version displays a second-order phase transition with a vanishing specific heat critical exponent α, thus, the Harris criterion is inconclusive, in that disorder is a relevant or irrelevant perturbation for the critical behaviour of the pure system. The main effort was focused on the specific heat and magnetic susceptibility. We have also looked at the probability distribution of susceptibility, pseudocritical temperatures and specific heat for assessing self-averaging. The study was carried out in appropriate restricted but dominant energy subspaces. By applying the finite-size scaling analysis, the correlation length exponent ν was found to be greater than one, whereas the ratio of the critical exponents (α/ν) is negative and (γ/ν) retains its pure Ising model value supporting weak universality.  相似文献   

7.
L. Bahmad  A. El Kenz 《Physica A》2008,387(4):825-833
The magnetic properties of a mixed Ising ferrimagnetic system, in which the two interacting sublattices have spins σ, (±1/2) and spins S, (±1,0) in the presence of a random crystal field, have been studied with the mean field approach. The obtained results show the existence of some interesting phenomena, such as the appearance of a new ferrimagnetic phase, namely, partly ferrimagnetic phase and consequently the existence of four topologically different types of phase diagrams. Furthermore, compensation behaviour and re-entrant phenomenon are found for appropriate ranges of crystal field. Thermal magnetization behaviour and phase diagrams have been discussed in detail.  相似文献   

8.
Using Wang-Landau entropic sampling we study the Ising model in the framework of microcanonical ensemble (fixed magnetization). We are working for lattice size up to 1500×1500 in two dimensions and 100×100×100 in three dimensions. As we approach the coexistence curve from inside, varying temperature and keeping the magnetization constant, a first-order phase transition takes place for a temperature near the coexistence curve if the lattice size is large enough. We analyze various features of this transition as well as the scaling behavior of characteristic quantities and we compare our numerical results with existing theories.  相似文献   

9.
We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.  相似文献   

10.
We consider a spherical uniaxial antiferromagnetic particle in the presence of an external magnetic field perpendicular to its easy axis. The model is described by a classical Heisenberg Hamiltonian including a single-ion uniaxial anisotropy, where the magnetic moments of the particle are represented by continuous spin vectors. We employ mean-field calculations and Monte Carlo simulations to determine the phase diagram of the system. The phase diagram in the plane field versus temperature is obtained for particles with radii ranging from three up to twelve spacing lattice units. We have seen that a particle with more than nine shells behaves as a true thermodynamic system. We find the explicit dependence of the zero temperature critical field and the Néel temperature on the diameter of the particle. At low temperatures, we have also shown that, for particles with three or more shells, the critical field follows a T2 law, which is in agreement with the predictions of the spin-wave theory, when the field is perpendicular to the easy axis.  相似文献   

11.
We restudy the phase diagram of the 2D-Ising model with competing interactions J1 on nearest neighbour and J2 on next-nearest neighbour bonds via Monte-Carlo simulations. We present the finite temperature phase diagram and introduce computational methods which allow us to calculate transition temperatures close to the criticalpoint at J2 = J1/2. Further on we investigate the character of the different phase boundariesand find that the transition is weakly first order formoderate J2 > J1/2.  相似文献   

12.
The magnetic properties of the ternary system ABC consisting of spins , S=1, and are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q?3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.  相似文献   

13.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

14.
In the present work we study the critical properties of the ferromagnetic three-color Ashkin-Teller model (3AT) by means of a Migdal-Kadanoff renormalization group approach on a diamond-like hierarchical lattice. The analysis of the fixed points and flux diagram of the recursion relations is used to determine the corresponding phase diagram (including its symmetry properties) and critical exponents. Our numerical results show the presence of four universality classes, three of them are associated to the Potts model with q=2, 4 and 6 states. Finally, a connection between our findings and some known results from the literature is presented.  相似文献   

15.
The nonequilibrium or dynamic phase transitions are studied, within a mean-field approach, in the kinetic Ising model on a two-layer square lattice consisting of spin- 1/2 ions in the presence of a time varying (sinusoidal) magnetic field has been studied by using Glauber-type stochastic dynamics. The dynamic equations of motion are obtained in terms of the intralayer coupling constants J1 and J2 for the first and second layer, respectively, and interlayer coupling constant J3 between these two layers. The nature (first- or second-order) of the transitions is characterized by investigating the behavior of the thermal variations of the dynamic order parameters. The dynamic phase transitions are obtained and the dynamic phase diagrams are constructed in the plane of the reduced temperature versus the amplitude of the magnetic field and found fourteen fundamental types of phase diagrams. Phase diagrams exhibit one, two or three dynamic tricritical points for various values of J2/|J1| and J3/|J1|. Besides the paramagnetic (p), ferromagnetic (f) and compensated (c) phases, there were the f+c,f+sf,c+sf,af+p,m+p,f+m and c+af, where the af, sf and m are the antiferromagnetic, surface ferromagnetic and mixed phases respectively. Coexistence phase regions also exist in the system.  相似文献   

16.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

17.
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H0>3.8275, H0 is the magnetic field amplitude, the compensation effect does not appear in the system.  相似文献   

18.
We have performed computer simulations of Kauffman’s automata on several graphs, such as the regular square lattice and invasion percolation clusters, in order to investigate phase transitions, radial distributions of the mean total damage (dynamical exponent) and propagation speeds of the damage when one adds a damaging agent, nicknamed “strange man”. Despite the increase in the damaging efficiency, we have not observed any appreciable change of the transition threshold to chaos neither for the short-range nor for the small-world case on the square lattices when the strange man is added, in comparison to when small initial damages are inserted in the system. Particularly, we have checked the damage spreading when some connections are removed on the square lattice and when one considers special invasion percolation clusters (high boundary-saturation clusters). It is seen that the propagation speed in these systems is quite sensible to the degree of dilution on the square lattice and to the degree of saturation on invasion percolation clusters.  相似文献   

19.
We consider a flower-like Ising model, in which there are some additional bonds (in the “flower-core”) compared to a pure Ising chain. To understand the behaviour of this system and particularly the competition between ferromagnetic (usual) bonds along the chain and antiferromagnetic (additional) bonds across the chain, we study analytically and iteratively the main thermodynamic quantities. Very interesting is, in the zero-field and zero-temperature limit, the behaviour of the magnetization and the susceptibility, closely related to the ground state configurations and their degeneracies. This degeneracy explains the existence of non-zero entropy at zero temperature, in our results. Also, this model could be useful for the experimental investigations in studying the saturation curves for the enzyme kinetics or the melting curves for DNA-denaturation in some flower-like configurations.  相似文献   

20.
The dimerized spin-1 Ising chain with both longitude and transverse single-ion anisotropies Dz and Dx is solved exactly by means of a mapping to the spin- Ising chain with the alternating transverse fields and the Jordan-Wigner transformation. The analytical expressions of the quasi-particles’ spectra Λk, the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole, and the ground-state energy Eg are obtained. The phase diagram of the ground state is also given. The results show that the system exhibits a series of quantum phase transitions depending on the dimerization strength of the crystal fields, while the quantum critical points are determined exactly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号