首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a degenerate parametric oscillator whose cavity contains a two-level atom. Applying the Heisenberg and quantum Langevin equations, we calculate in the bad-cavity limit the mean photon number, the quadrature variance, and the power spectrum for the cavity mode in general and for the signal light and fluorescent light in particular. We also obtain the normalized second-order correlation function for the fluorescent light. We find that the presence of the two-level atom leads to a decrease in the degree of squeezing of the signal light. It so turns out that the fluorescent light is in a squeezed state and the power spectrum consists of a single peak only.  相似文献   

2.
The evolution of a two-level system in a single-mode quantum field is considered beyond the rotating wave approximation. It is shown for the first time that the Rabi oscillations of the system are modified in the resonant way at some values of the field amplitude.  相似文献   

3.
We have theoretically studied the effects of quantum coherence in a driven quasi-degenerate two-level atomic system. We have shown that the quantum interference, which can be destructive or constructive, can be controlled by an externally applied magnetic field allowing one to implement both electromagnetically induced transparency and electromagnetically induced absorption in the same atomic system. Determined by frequency dispersion of the index of refraction of the system, the group velocity of light pulses ranges from ultra-slow to superluminal with changing of the magnitude of the magnetic field.  相似文献   

4.
We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω?1). In this case, the rotating-wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and predictive physical frame to describe the DSC regime where photon number wave packets bounce back and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial population. We exemplify our physical frame with numerical and analytical considerations in the qubit population, photon statistics, and Wigner phase space.  相似文献   

5.
We perform the second-order quantum interference experiment with the multimode photon pairs produced via an optical parametric oscillator far below threshold in a Michelson interferometer, measure the second-order correlation function in different cases. We find when the interferometer is highly unbalanced, the shape of the second-order correlation function is clearly dependent on the path length difference between two interfering beams. On the contrary, when the interferometer is nearly balanced, beside its height, the shape of the second-order correlation function is independent on the small path length difference. The second-order correlation function shows a multipeaked structure in both cases. All experimental results agree very well with the theoretical predictions.  相似文献   

6.
The evolution of the atomic state population in a two-level system coupled to a single-mode quantum field is calculated in the analytical form. Essential characteristics of the “collapse-revival” effect are expressed in terms of the physical parameters of the system by means of simple formulas in both the resonant and the non-resonant cases. The obtained results are of great importance for the qualitative analysis of the phenomenon.  相似文献   

7.
The nonclassical squeezing effect emerging from a nonlinear coupling model (generalized Jaynes–Cummings model) of a two-level atom interacting resonantly with a bimodal cavity field via two-photon transitions is investigated in the rotating wave approximation. Various Bloch coherent initial states (rotated states) for the atomic system are assumed, i.e., (i) ground state, (ii) excited state, and (iii) linear superposition of both states. Initially, the atomic system and the field are in a disentangled state, where the field modes are in Glauber coherent states via Poisson distribution. The model is numerically tested against simulations of time evolution of the based Heisenberg uncertainty relation variance and Shannon information entropy squeezing factors. The quantum state purity is computed for the three possible initial states and used as a criterion to get information about the entanglement of the components of the system. Analytical expression of the total density operator matrix elements at t > 0 shows, in fact, the present nonlinear model to be strongly entangled, where each of the definite initial Bloch coherent states is reduced to statistical mixtures. Thus, the present model does not preserve the modulus of the Bloch vector.  相似文献   

8.
We derive a master equation describing the evolution of a quantum system subjected to a sequence of observations. These measurements occur randomly at a given rate and can be of a very general form. As an example, we analyse the effects of these measurements on the evolution of a two-level atom driven by an electromagnetic field. For the associated quantum trajectories we find Rabi oscillations, Zeno-effect type behaviour and random telegraph evolution spawned by mini quantum jumps as we change the rates and strengths of measurement.  相似文献   

9.
A symmetric four-level closed-loop ? type (the diamond-shape) atomic system driven by four coherent optical fields is investigated. The system shows rich quantum interference and coherence features. When symmetry of the system is broken, interesting phenomena such as single and double-dark resonances appear. As a result, the controllable double electromagnetically induced transparency (EIT) effect is generated, which will facilitate the implementation of quantum phase gate (QPG) operation.  相似文献   

10.
We consider the evolution of a two-level system coupled to a photon field initially in a coherent state, as the energy of the two-level system is linearly varied through resonance with the photon field. At a fixed time after the resonance, the amplitude of the photon field is found to show a collapse and subsequent revivals as a function of rate of energy variation. Including decay of the photon field, we find that the observation of such collapse and revivals is near the technological limit of current cavity QED experiments but should be achievable.  相似文献   

11.
In the present paper we consider the case of a two-level ion in a cavity in the presence of a single mode field linearly polarized. We suppose that the ion is free to move along the polarization direction and trapped by a harmonic potential along the other two directions. By multiple path integration we derive the density matrix of the system and we study its dynamics. We assume an initial electromagnetic vacuum. This initial condition for the present system, compared with any other initial photonic state, gives new and higher order leading terms with respect to an expansion in powers of the inverse of the volume. Further after such an expansion there appears a first order term that originates from the combined interaction of the two-level system (qubit) with the quantum motion of the ion and the electromagnetic field in the cavity. We notice that the dynamics of the present system is very rich and can be studied exhaustively in the present framework.  相似文献   

12.
We explore the quantum dynamical behavior of the Morse oscillator in the phase space using the Wigner function. For an initial wave packet excited with Gaussian probability distribution, we calculate the associated Wigner function and compute its time evolution. By calculating the marginal probabilities, we study the formation of quantum carpets both in the position space and in the momentum space. In addition, in view of these probabilities, we present the time evolution of the position and momentum expectation values. The structure of quantum carpets and the time-evolved expectation values mimic the emergence of quantum revivals and fractional revivals.  相似文献   

13.
The evolution of a two-level system subjected to stimulated transitions which is undergoing a sequence of measurements of the level occupation probability is evaluated. Its time correlation function is compared to the one obtained through the pure Schr?dinger evolution. Systems of this kind have been recently proposed for testing the quantum mechanical predictions against those of macrorealistic theories, by means of temporal Bell inequalities. The classical requirement of noninvasivity, needed to define correlation functions in the realistic case, finds a quantum counterpart in the quantum nondemolition condition. The consequences on the observability of quantum mechanically predicted violations to temporal Bell inequalities are drawn and compared to the already dealt case of the rf-SQUID dynamics. Received: 28 March 1996 / Revised version: 13 August 1996  相似文献   

14.
We investigate collective and quantum properties of the atomic inversion of A two-level atoms interacting with a strong quantum field of a single-mode loss-free cavity. The dynamics consists of A fast scales of Rabi oscillations, each featuring collapses and revivals. The first revival of the second quasiharmonic scale can be observed with large cooperativity, demonstrating altogether the existence of the extra sidebands of the resonance fluorescence spectrum. There are also A slow cooperative scales which form the slow envelope of the inversion, which for large cooperativity can split the revivals. For the case of half excited initial atomic state the energy exchange between the field and atomic system is strongly suppressed, and there is an average energy loss by the atoms.  相似文献   

15.
《Physics letters. A》1999,256(1):15-19
Revivals of the coherent states of a deformed, adiabatically and cyclically varying oscillator Hamiltonian are examined. The revival time distribution is exactly that of Poincaré recurrences for a rotation map: only three distinct revival times can occur, with specified weights. A link is thus established between quantum revivals and recurrences in a coarse-grained discrete-time dynamical system.  相似文献   

16.
The alteration of atomic absorption via quantum coherence is observed in the degenerate two-level atomic system. It is shown that when the detuning of coupling field equals to that of probe light, i.e. two-photon resonance, the reduction of atomic absorption via electromagnetically induced transparency occurs. However, when we tune the coupling field to two-photon off-resonance, the enhancement of absorption is obtained for the probe field. The influences of one-photon detuning and intensity of coupling field on absorption are also experimentally demonstrated.  相似文献   

17.
The Back Action Evading technique is a particular kind of quantum non demolition measurement, first proposed by Caves et al. in 1980 [3]. We present an experimental study to implement the Back Action Evading measurement scheme in monitoring the amplitude of an harmonic oscillator excited by a classical force. Results showing the agreement of our theoretical model with the experimental behaviour of our apparatus in the classical regime are presented. We discuss also the optimization of the performance of our set-up, which should allow to monitor our oscillator in quantum regime even below the standard quantum limit level. Received: 22 March 1996  相似文献   

18.
S.S. Hassan  R.N. Deb 《Physics letters. A》2009,373(40):3697-3700
We consider the dissipative N two-level atom Dicke system driven by a c.w. laser field. In the steady state, the cooperativity among the atoms via the radiation field produces spin squeezing. Even in the absence of dipole-dipole interaction, the system shows spin squeezing which is attributed to strong nonlinear interaction with the driving field.  相似文献   

19.
采用全量子理论,对注入腔内的二能级原子、单模腔场和振动边界(视为频率为ωm的量子谐振子)构成的系统,在相互作用绘景中,求解了该系统的态函数随时间的演化关系,在此基础上得到了原子布居数随时间的演化关系,结果显示布居数在初始值附近振荡,这说明边界的振动是周期性的,它对原子布居数的影响也是周期性的. 关键词: 边界振动的微腔 二能级原子 布居数  相似文献   

20.
We derive pseudo-orthogonality relations for both the magnetic and electric eigenmodes of a system of two-level atoms in a sphere configuration. We verify numerically that an arbitrary vector field can be reconstructed to a great accuracy from these eigenmode expansions. We apply this eigenmode analysis to explore superradiance from a sphere with initially uniform polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号