首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
2.
Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λp/(1−βg), where λp is the plasma wavelength and βgc the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γm−1)mc2=2.645mc2/(1−βg), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as βg approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators.  相似文献   

3.
W. Masood  A. Mushtaq 《Physics letters. A》2008,372(23):4283-4289
Linear properties of obliquely propagating magnetosonic waves (both fast and slow) in multicomponent (electron-positron-ion (e-p-i) and dust-electron-ion (d-e-i)) quantum magnetoplasma are studied. It is found that the quantum Bohm potential term significantly changes the propagation of fast and slow magnetosonic waves in both e-p-i and d-e-i quantum plasmas. The variation of the dispersion characteristics with the increase/decrease of positron concentration in e-p-i and dust concentration in d-e-i quantum magnetoplasma is explored. Finally, the effect of angle θ (that the ambient magnetic field makes with the x-axis) on the dispersion properties of magnetosonic waves in multicomponent quantum magnetoplasma is investigated. The relevance of the present investigation to the dense astrophysical environments and microelectronic devices is also pointed out.  相似文献   

4.
R.S. Tiwari 《Physics letters. A》2008,372(19):3461-3466
Expanding the Sagdeev potential to include fourth-order nonlinearities of electric potential and integrating the resulting energy equation, an exact soliton solution is determined for ion-acoustic waves in an electron-positron-ion (e-p-i) plasma system. This exact solution reduces to the dressed soliton solution obtained for the system using renormalization procedure in the reductive perturbation method (RPM), when Mach number (M) is expanded in terms of soliton velocity (λ) and terms up to order of λ2 are retained in the analysis. Variation of shape, velocity, width and product (P) of amplitude (A) and square of width (W2) for the KdV soliton, core structure, dressed soliton, and exact soliton are graphically represented for different values of fractional positron concentration (p). It is found that for a given value of the fractional positron concentration (p) and amplitude of soliton, the velocity of the dressed soliton is faster and width is narrower than the KdV or exact soliton, and agrees qualitatively with the experimental observations of Ikezi et al. for small amplitude solitons in the plasma free from positron component. Among all these structures, the product P(AW2) is found to be lowest for the dressed soliton and it decreases as Mach number of soliton or fractional positron concentration in the plasma increases.  相似文献   

5.
W. Masood 《Physics letters. A》2009,373(16):1455-1459
Linear and nonlinear propagation characteristics of quantum drift ion acoustic waves are investigated in an inhomogeneous two-dimensional plasma employing the quantum hydrodynamic (QHD) model. In this regard, the dispersion relation of the drift ion acoustic waves is derived and limiting cases are discussed. In order to study the drift ion acoustic solitons, nonlinear quantum Kadomstev-Petviashvilli (KP) equation in an inhomogeneous quantum plasma is derived using the drift approximation. The solution of quantum KP equation using the tangent hyperbolic (tanh) method is also presented. The variation of the soliton with the quantum Bohm potential, the ratio of drift to soliton velocity in the co-moving frame, , and the increasing magnetic field are also investigated. It is found that the increasing number density decreases the amplitude of the soliton. It is also shown that the fast drift soliton (i.e., v*>u) decreases whereas the slow drift soliton (i.e., v*<u) increases the amplitude of the soliton. Finally, it is shown that the increasing magnetic field increases the amplitude of the quantum drift ion acoustic soliton. The stability of the quantum KP equation is also investigated. The relevance of the present investigation in dense astrophysical environments is also pointed out.  相似文献   

6.
三角激光脉冲尾波加速粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
徐涵  常文蔚  银燕  卓红斌 《物理学报》2004,53(3):818-823
电子俘获是激光尾波场加速电子的主要机理,增大电子的初速度可以使更多的电子被尾波场俘获.提出三角脉冲激发尾波加速电子的方案,三角脉冲平缓上升沿激发受激Raman散射,用以初步加速电子,三角脉冲陡峭下降沿激发尾波场,将更多的电子加速到接近光速.2D3V粒子模拟结果证实了这一点.同时表明:脉冲长度为几个等离子体波长的超强激光在稀薄等离子体中传播时,还激发侧向Raman散射.在侧向受激Raman散射中,静电波增长最快的波矢模式为kp=(2ωp0 关键词: 有质动力 电子俘获 前向受激Raman散射 侧向受激Raman散射  相似文献   

7.
We consider the nonlinear interactions between finite amplitude electron and ion plasma oscillations in a fermionic quantum plasma. Accounting for the quantum statistical electron pressure and the quantum Bohm potential, we derive a set of coupled nonlinear equations that govern the dynamics of modulated electron plasma oscillations (EPOs) in the presence of the nonlinear ion oscillations (NLIOs). We numerically study stationary solutions of our coupled nonlinear equations. We find that the quantum parameter H (equal to the ratio between the plasmonic and electron Fermi energy densities) introduces new features to the electron density and electric potential humps of localized NLIOs in the absence of EPOs. Furthermore, the nonlinear coupling between the EPOs and NLIOs gives rise to a new class of envelope solitons composed of bell shaped electric field envelope of the EPOs, which are trapped in the electron density hole (and an associated negative oscillatory electric potential) that is produced by the ponderomotive force of the EPOs. The knowledge of the localized plasmonic structures is of immense value for interpreting experimental observations in dense quantum plasmas.  相似文献   

8.
The possibility of using space-charge waves on an ion beam or column as a wakefield accelerator is discussed. The primary advantages of using ion plasma waves over electron plasma waves are that the kinetic energy and fall-time requirements on the driving beam are reduced. One disadvantage in using a lower plasma frequency is that a larger current is required to achieve the same accelerating gradient. The basic aspects of wakefield accelerators are reviewed and this concept is analyzed in this context. Particle-in-cell simulations show that wakefields utilizing ion waves, although more complicated than plasma wakefields, can produce acceleration.  相似文献   

9.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

10.
韩莹  阮存军 《中国物理 B》2011,20(10):104101-104101
This paper investigates the diocotron instability of an infinitely wide relativistic sheet electron beam in conducting walls propagating through a uniform magnetic field by using the macroscopic cold-fluid model theory. Assuming low-frequency perturbations with long axial wavelengths, the eigenvalue equation and the dispersion relation are acquired for a sheet electron beam with sharp boundary profile and uniform density. The results presented in this paper has developed the use of the macroscopic cold-fluid model theory by extending the parameter of the electron cyclotron frequency ωc to a wider usage range, which is restricted to be much larger than the plasma frequency ωp in the previous research work. Theoretical analyses and numerical calculations indicate that the transport of the sheet electron beam will be completely stabilized by augmenting the normalized beam thickness to a conductor gap larger than a threshold λb, which is greatly dependent on the parameter ωc/ωp. The larger ωc/ωp is, the smaller λb will be needed. Moreover, the system parameters, including the wave number kx of the perturbations and the relativistic mass factor γb, will also influence the growth rate of diocotron instability obviously.  相似文献   

11.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

12.
拍波激光加速器中的频率匹配   总被引:3,自引:0,他引:3       下载免费PDF全文
朱莳通 《物理学报》1989,38(7):1167-1171
本文从广义协变的运动方程和麦克斯韦方程出发,导出了电子等离子体波各量的解析表达式。指出△ω=2ωp的等离子体波是完全简谐的。完全共振的条件由△ω=2ω(p0)[1+(e2(A2((1)2)+(A2((2)2))/(2m2c4)+(3e2A2(1)A2(2))/(m2c4)]-1/2 给出。 关键词:  相似文献   

13.
Resonant third harmonic generation of a sub-millimeter wave in n-InSb waveguide embedded with a density ripple is investigated. The non-linearity arises through the modulation of free electron mass while the ripple accounts for the phase mismatch. The efficiency of the third harmonic generation is large. However, as the plasma frequency increases the attenuation rate of the third harmonic increases and the third harmonic efficiency decreases as (ωpb/c) is raised.  相似文献   

14.
Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration ‘rc’ negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to ‘rc’ both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.  相似文献   

15.
The steady state self-focusing of a Gaussian electromagnetic beam in a magneto-plasma has been studied. On a short time scale, a non-linearity in the dielectric constant of a plasma appears due to the ponderomotive force. This force in the case of the extraordinary mode has opposite signs forω>ω c andω<ω c, whereω c is the electron cyclotron frequency. The self-focusing due to this effect is predicted at frequencies except forω c /2<ω<ω c . The focusing of the ordinary mode is adversely affected by the magnetic field. On a larger time scale, the non-uniform heating of electrons by the beam and the resulting redistribution of the electron density is a source of non-linearity. This non-local non-linearity is several orders of magnitude higher than the ponderomotive non-linearity. We predict self-focusing of the extraordinary mode only above the gyroresonance (ω>ω c ), while the ordinary mode can be focused at all frequencies.  相似文献   

16.
The collisional recombination, in the afterglow of a dense plasma, is regarded as a source process for an overpopulation of the high energy tail of the electron velocity distribution function. The perturbation of the distribution function leads to an important enhancement of the fluctuations of the electrostatic field in a narrow range near the plasma frequencyω p .  相似文献   

17.
Existence of large amplitude stationary solitary wave structures in an unmagnetized electron-positron (e-p) plasma is studied using a quantum hydrodynamic (QHD) model that includes the quantum force (tunnelling) associated with the Bohm potential and the Fermi-dirac pressure law. It is found that in a quasi-neutral pair (e-p) plasma, where the dispersion is only due to the the quantum tunnelling effects, the large amplitude stationary solitary structure exists only when the normalized Mach speed,M <√2. Such solitary structures do not exist in absence of the Bohm potential term in an unmagnetized quasineutral pair (e-p) plasma. The system is shown to support only rarefactive stationary solitary waves. For such waves the amplitude, being independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), decreases with the Mach number M, whereas the width increases with both M and H. The present theory is applicable to analyze the formation of localized coherent solitary structures at quantum scales in dense astrophysical objects as well as in intense laser fields.  相似文献   

18.
S.C. Tiwari 《Optik》2012,123(16):1461-1464
Ratio of electron charge radius and Compton wavelength of electron is known to be equal to the dimensionless electromagnetic coupling constant e2/? c. It is pointed out that the coupling constant has two alternative interpretations: as a ratio of two angular momenta since Planck constant has the dimension of angular momentum, and two flux quanta e and hc/e. We argue that it has deep physical significance such that the electronic charge becomes flux itself and at a fundamental level fractional spin of quantized vortex. A unified perspective of the three interpretations of the coupling constant is presented invoking the new interpretation of the magnetic moment of the electron comprising three terms. A critical discussion on the magnetism and flux quantum is given and the implication on the spintronics is pointed out.  相似文献   

19.
Here is presented the calculation of the dynamic electrical conductivity of fully ionized, strongly coupled plasmas as a function of the external electric field frequency ω. The calculations are based on the formula for the energy-dependent collision frequency which is determined by means of the Green function theory methods, as a sum over the Matsubara frequencies. The domain of extremely high electron density: 1021?ne?1024 cm−3, and for the temperature varying from 10 kK to 1000 kK was examined. The real and imaginary parts of the conductivity for every electron density are presented in the generalized Drude-like form as a two-parameter function of the frequency ω in the region 0<ω<0.5ωp, where ωp is the plasma frequency. A good agreement between the obtained results and the existing theoretical and computing simulation data is shown.  相似文献   

20.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1<Γ?Γc) where Γ is the Coulomb coupling parameter and Γc is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号