首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Simulations of QCPMG NMR type experiments have been used to explore dynamic processes of half-integer quadrupolar nuclei in solids. By setting up a theoretical approach that is well suited for efficient numerical simulations the QCPMG type experiments have been analyzed regarding the effect of the magnitude of the EFG- and CSA-tensors, the spin-quantum number, different dynamical processes and MAS. Compared to the QE experiment the QCPMG experiment offers not only intensity gain by an order of magnitude and changes in overall lineshape as a function of the kinetic rate constant but the lineshape of the individual spin-echo sidebands is also very sensitive towards dynamics. Hereby a visual identification of the dynamics is obtained. In common for all the simulations the spin-echo sidebands are narrow in the slow (k< or =10(2) Hz) and the fast (k> or =10(7) Hz) dynamic regime whereas they are broadened in the intermediate regime 10(3)< or =k< or =10(7) Hz. The maximum intensity of the spin-echo sidebands for two-site jumps is highly dependent on the type of anisotropic interactions involved and the type of QCPMG experiment. Hence, in the fast limit the maximum intensity was 140% of the initial intensity when significant CSA was present or under the QCPMG-MAS experiment compared to 89 or 71% for the static experiment influenced by the quadrupolar interaction only. For 3-, 4-, and 6-site jumps the maximum intensity in the fast limit reached up to 339% of the intensity in the static limit.  相似文献   

2.
The adsorption of Na+ on γ-alumina surfaces at four coverages of Na2CO3 [5, 10, 15 and 20% (w/w)] was characterized by solid-state 23Na and 27Al nuclear magnetic resonance (NMR) spectroscopy. The experimental results suggest that two distinct adsorbed species are present on the alumina surface: surface species and surface salts. At the lower coverages of Na2CO3 (5 and 10%), the surface species is predominant, in which the Na+ cations are associated with the oxygen atoms of γ-alumina. Increasing the loading level to 15% results in the appearance of a second adsorbed species that is attributed to the surface salt, Na2CO3, deposited on the solid surface. Further adsorption of Na2CO3 leads to an increase in the amount of surface salt while the amount of surface species remains unchanged. 1H---27Al Cross-polarization magic angle spinning (CP-MAS) experiments give the evidence that some Na+ cations in the form of surface species are coordinated with the Brönsted acid sites of γ-alumina. This may be the main driving force that improves appreciably the catalytic efficiency of an Na2CO3---Al2O3 catalyst.  相似文献   

3.
The 27Al nuclear magnetic resonance (NMR) response of a series of natural and synthetic corundum (α-Al2O3) samples is studied quantitatively by short-pulse excitation and frequency-stepped adiabatic half-passage (FSAHP). Using on- and off-resonance nutation NMR, it was established that the quadrupole coupling parameters of visible Al is identical in all samples. Remarkably, the relaxation behavior for the aluminum is very different in the various samples and has a marked effect on the quantitative response. In natural corundum samples the 27Al spin-lattice relaxation is very efficient as these samples contain paramagnetic impurities. As a result, however, the full signal could not be recovered, which is attributed to relaxation broadening of spins in the vicinity of these impurities. In synthetic samples, containing no impurities, the full signal could be recovered, although the relaxation behaviour appeared to depend strongly on the preparation method. We observed differences in the spin-lattice relaxation by a factor 20; the longest T1 was observed in a crushed single crystal. This implies that α-Al2O3 can only be used as a standard in quantitative analyses if it has been characterized thoroughly. Furthermore, the effective relaxation behaviour for different types of excitation is studied. Finally, a method to measure the spin-lattice relaxation of half-integer quadrupole nuclei is introduced, using a frequency-stepped adiabatic passage (FSAP) to invert the spin system.  相似文献   

4.
Waterman's surface-integral expressions for the T-matrix elements are derived on the basis of the quantum-mechanical potential scattering approach in electromagnetic scattering problem. We use general definition of the elements of the T-matrix as the matrix elements of the dyadic transition operator and Lippman–Schwinger volume integral equation for the dyadic transition operator. The interrelations of the Q- and Waterman's T-matrix with the transition operator are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号