首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of a 6O2 + (H2O)50 system with two, four, or six Cl ions are studied by the molecular dynamics method. The integral intensity of IR and Raman spectra decreases with an increase in the number of Cl ions surrounding the system. The values of real and imaginary parts of dielectric permittivity increase with the rise in the frequency reaching maxima in the 850 ≤ ω ≤ 950 cm−1. As a result of interactions between ions and the formed (O2)6 (H2O)50 cluster, the pattern of the reflection spectrum of IR radiation becomes smoother. The interaction between 6O2 + (H2O)50 system and Cl ions leads to the substantial increase in the power of emitted radiation. With time, Cl ions gradually leave the interaction zone with the system. Maximum residence time of the last ion near the system boundary does not exceed 3 ps. Cl ions located closer to O2 molecules do not penetrate into the depth of an (O2)6 (H2O)50 cluster.  相似文献   

2.
Interactions of (Br) i (H2O)50−i clusters (0 ≤ i ≤ 6) with molecular oxygen is studied by the molecular dynamics method using flexible molecule model. Values of real and imaginary parts of permittivity decrease in the 0 ≤ ω ≤ 3500 cm−1 frequency range with increasing number of bromine ions in a cluster. The ability of cluster to absorb IR radiation decreases, whereas the reflectance and Raman light scattering remains nearly unchanged. An increase in the content of Br ions in the cluster lowers the power of emitted IR radiation and decreases the amount of active electrons participating in the interaction with IR radiation. However, when the concentration of Brions becomes substantially higher (at i = 5 and 6), the values of emitted power and the number of active electrons are restored to the values that are typical for water cluster in the absence of Br ions. At i ≥ 3, repelling Br ions acquire kinetic energy, which is sufficient to remove molecular oxygen from the system.  相似文献   

3.
Interaction of bromine ions absorbed by water cluster with adsorbed oxygen and ozone molecules has been investigated by the molecular dynamics method. It was shown that the part of O2 molecules was removed from the system by evaporating Br ions, while all O3 molecules and Br ions were kept in the system during 25 ps. The increase the concentration of the Br ions in the clusters resulted in a reduction of the absorption intensity and emission in IR spectra at the presence of oxygen, whereas the absorption intensity in the appropriate IR spectra of ozone-containing systems increased with the growth of a number of the Br ions. Raman spectra of oxygen-containing systems were poorly sensitive to the concentration of the Br ions but the absorption intensity of Raman spectra for systems with ozone considerably decreased with the growth of a number of bromine ions.  相似文献   

4.
The interaction of IR radiation with water clusters that have absorbed NO2 molecules is studied by the molecular dynamics method in terms of the polarizable model. Induced dipole moments of H2O and NO2 molecules diminish during the addition of one to six NO2 molecules to (H2O)50 cluster. The integral intensity of IR absorption by a system consisting of (NO2) i (H2O)50 heteroclusters with 1 ≤ i ≤ 6 decreases, whereas the power of heat emission rises as compared with an (H2O) n system. The decrease in the IR absorption and the increase in the IR emission by water clusters with the capture of NO2 molecules are nonmonotonic. The absorption of NO2 molecules by water clusters causes a noticeable reduction in the intensity of the first peak and the confluence of the fourth and fifth peaks in the Raman spectrum.  相似文献   

5.
The absorption of NO2 molecules by a water cluster containing 25 molecules was studied by molecular dynamics. The calculated dielectric characteristics of a system of (NO2) i (H2O)25 clusters (1 ≤ i ≤ 6) were compared with similar data for a cluster system of pure water. The ability of the disperse water system that trapped NO2 molecules to absorb IR radiation increased, and the rate of the absorbed energy emission decreased. The Raman spectrum of the disperse system that absorbed NO2 molecules changed most significantly in the low-frequency range. The emission time of cluster-generated radiation was much smaller than the lifetime of the clusters.  相似文献   

6.
The effect of absorbed water on the dielectric properties of silicon dioxide nanoparticles is studied by the molecular dynamic method. It is demonstrated using the model of flexible molecules that increasing the number of water molecules in the (SiO2)50 cluster to 40 results in an enhancement of absorption of infrared radiation over the frequency range 0 cm−1 ≤ ω ≤ 1000 cm−1. It is ascertained that the absorption of water molecules by the (SiO2)50 cluster considerably alters the shape of Raman spectra of light, smoothing all the peaks after the first one, and that water molecules are concentrated near the cluster surface formed by SiO2 structural units.  相似文献   

7.
Electronic structure of Fe3O4 cluster and the products of its interaction with water molecule hydrates H4O2 and H5O2+ and H3O2 ions is calculated by the quantum-chemical method DFT B3LYP/6-31G**. The expected behavior of magnetite in the acidic, neutral, and alkaline media is analyzed in the approximation of parameters of their electronic structure (the effective charges, binding and free valences of iron and oxygen atoms). In the interaction between Fe3O4 and H5O2+ (acidic medium), a hydride bond Fe-H forms, and the remainder of magnetite cluster becomes more susceptible to the attack of reagents. By contrast, the interaction of Fe3O4 with H3O2 (alkaline medium) yields an oxide structure with low chemical activity of both iron and oxygen atoms. The calculated data are in agreement with the experimental data on the corrosion behavior of magnetite.  相似文献   

8.
The infrared absorption and Raman spectra were calculated by the molecular dynamics method for water clusters with chlorine ions in a medium of water and ozone or oxygen molecules. The intensity of IR absorption spectra of clusters with absorbed oxygen increased and that of clusters with absorbed ozone decreased as the number of chlorine ions grew. Excitation strengthening caused by an increase in the number of Cl ions weakened the intensity of Raman spectra when either oxygen or ozone was absorbed; for ozone, this weakening was more noticeable.  相似文献   

9.
The stoichiometry of thermal decomposition was studied for the following Mg(II) nicotinamide (NA) complexes: Mg(Ac)2(NA)5·2H2O (I), Mg(CIAc)2(NA)6·6H2O (II), Mg(Cl2Ac)2(NA)6·5H2O (III) and Mg(Cl3Ac)2(NA)6·2H2O (IV), where Ac=CH3COO, ClAc=ClCH2COO, Cl2Ac=Cl2CHCOO and Cl3Ac=Cl3CCOO. Heating the compounds results first in the release of water molecules. The NA molecules are released in one step (complexes II and III) or in two steps (complexes I and IV). The compositions of the complexes, the solid-state intermediates and the products of thermolysis were identified by means of elemental analysis and complexometric titration. The results reveal that MgO is left as residue at the end of thermal degradation of compounds I–IV, NA is coordinated to Mg(II) through the nitrogen atom of the heterocyclic ring. The IR data indicate unidentate coordination of the carboxylate ions to the Mg(II) in complexes I–IV. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A charge-transfer compound [(CH3)3CNH3]3[PMo12O40] · 2H2O was synthesized and characterized by IR, UV, ESR, diffusion reflectance electronic spectrum, cyclic voltammogram and X-ray crystallography. Oxygen atoms of the polyoxometalate anion, N atoms of organic substrates (CH3)3CNH2 and O atoms of water molecules are involved in hydrogen bonding. The solid reflectance electronic spectra and IR data indicate the presence of interaction between the [PMo12O40]3− and the organic substrates in the solid state. Photosensitivity to ultraviolet light was assessed for the compound, showing that charge-transfer resulted from oxidation of the organic substrates and the reduction of the heteropolyanion.  相似文献   

11.
The hypothesis that the degree of hydration of poly(oxyethylene) (POE) in aqueous solution depends on the mole ratio of water molecules to ether oxygen atoms in the molecule has been verified by studying the isotropic Raman spectra in the O−H stretching region for four short-chain POEs (C 1E n C 1 withn=1−4). Excellent coincidence of the O−H stretching Raman band for all four POEs studied in the range of mole ratio H2O/O ether from 25 to 0.6 was observed, thus confirming the assumption stated above. A conclusion that all ether oxygen atoms in the POE molecule participate in hydrogen bonding with water molecules has been made.  相似文献   

12.
Measurements are described to evaluate the constitution of secondary ion mass spectra for both monatomic and cluster primary ions. Previous work shows that spectra for different primary ions may be accurately described as the product of three material-dependent component spectra, two being raised to increasing powers as the cluster size increases. That work was for an organic material and, here, this is extended to (SiO2) t OH clusters from silicon oxide sputtered by 25 keV Bi n + cluster primary ions for n = 1, 3, and 5 and 1 ≤ t ≤ 15. These results are described to a standard deviation of 2.4% over 6 decades of intensity by the product of a constant with a spectrum, H SiOH/*, and a power law spectrum in t. This evaluation is extended, using published data for Si t + sputtered from Si by 9 and 18 keV Au and Au3, with confirmation that the spectra are closely described by the product of a constant with a spectrum, H Si*, and a simple spectrum that is an exponential dependence on t, both being raised to appropriate powers. This is confirmed with further published data for 6, 9, 12, and 18 keV Al and Al2 primary cluster ions. In all cases, the major effect of intensity is then related to the deposited energy of the primary ion at the surface. The constitution of SIMS spectra, for monatomic and cluster primary ion sources, is shown, in all cases, to be consistent with the product of a constant with two component spectra raised to given powers.  相似文献   

13.
Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold surfaces and studied by cyclic electrochemical quartz crystal microbalance measurements in the presence of aqueous solutions of different concentrations containing M+Cl, where M+=H+, Li+, Na+, K+, Rb+, Cs+. The RuCl3 and the complexes formed during the electrochemical transformations show two or more reduction and reoxidation pairs of waves, depending on the experimental conditions (concentration, scan rate, and potential range). The voltammetric peaks are shifted into the direction of higher potentials with increasing electrolyte concentrations except at very high concentrations when the peaks belong to the first reduction/reoxidation processes move oppositely. The mass change was reversible, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in two, more or less distinct steps. At high or low concentrations the mass excursions are more complex involving different mass increase/decrease regions as a function of potential which vary with the potential range of the measurements. The peak potentials and the electrochemical activity strongly depend on the nature of the cations and pH. It is related to the formation of complexes in different compositions. The mass change decreases with increasing electrolyte concentrations attesting the important role of the water activity and the transport of solvent molecules. It was concluded that in dilute solutions during the first reduction step M+ ions enter the surface layer. The strongly hydrated Li+ ions transfer water molecules into the microcrystals, while simultaneously with the incorporation of K+, Rb+, and Cs+ ions H2O molecules leave the surface layer. The opposite transport of ions and solvent molecules occur during oxidation. In the course of further reduction the incorporation of all ions studied except that of Cs+ ions is accompanied with water sorption. The number of sorbed water molecules is proportional to the hydration number of these ions. A reaction scheme is proposed in which M+ m-3[RuIIICl m (H2O) n ]3-m · xH2O (m≥3) and [RuIIICl m (H2O) n ]3-m (Cl)3-m · xH2O (m≤3) type complexes are reduced to the respective – or depending on the electrolyte concentration higher or lower – Ru(II)chloro complexes resulting in mixed valence compounds (phases). Taking into account the layered structure of RuCl3 the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula M x +(H2O) y [RuCl3] x are formed from RuCl3·x H2O. The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites, while the composition of the polynuclear complexes and the structure of microcrystals change. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13.−16., 2005.  相似文献   

14.
Thermogravimetry (TG), differential thermal analysis (DTA) and other analytical methods have been applied to the investigation of the thermal behaviour and structure of the compounds Mg(Ac)2 × 2H2 O(I), Mg(ClAc)2 ×2H2 O(II) and Mg(Cl2 Ac)2 ×H2 O(III) (Ac =CH3 COO , ClAc =ClCH2COO , Cl 2 Ac =Cl2 CHCOO ). The solid phased intermediate and resultant products of thermolysis had been identified. The possible scheme of destruction of the complexes is suggested. The halogenacetato magnesium complexes (II–III) are thermally more stable than the acetatomagnesium complex I. The final products of the decomposition of compounds were MgO. Infrared (IR) data suggest to a unidentate coordination of carboxylate ions to magnesium ions in complexes I–III. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
TG, DTA and other analytical methods were applied to investigate the thermal behaviour and structures of the compounds Mg(ClAc)2(Py)2·2H2O (I), Mg(Cl2Ac)2(Py)·H2O (II), Mg(Cl3Ac)2(Py)·6H2O (III) and Mg(SCN)2(Py)3·2H2O (IV), where ClAc=ClCH2COO, Cl2Ac=Cl2CHCOO, Cl3Ac=Cl3CCOO and Py=Pyridine. The compositions of the complexes and the solid-state intermediates and products of thermolysis were identified by means of elemental analysis. Possible schemes of destruction of the complexes are suggested. The final products of the thermal decompositions were MgO (I–III) and MgS (IV). The IR data suggest unidentate coordination of the carboxylate ions to Mg(II) in complexes I–III. Py is coordinated to the Mg(II) through the nitrogen atom of its heterocyclic ring. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The coordiantion compounds [Zn(C10H8N2)(Cl2HCCOO)(H2O)3]·[Zn(C10H8N2)(Cl2HCCOO)3]+ and [Cd(C10H8N2)2(Cl2CHCOO)2] were synthesised and characterised by elemental and thermal analysis, IR and UV–VIS spectroscopy, and X-ray crystallography. The complexes are air stable and well-soluble in water. The zinc atoms are five and six coordinated and the cadmium atom is six coordinated. The coordination polyhedra of central atoms can be described as trapezoidal pyramid and octahedron in zinc compound and as rectangular bipyramid strongly distorted towards skew trapezoidal bipyramid in cadmium compound. In both compounds all dichloroacetate groups are monodentate. The bond valences considerations show that all 2,2′-bipyridine molecules are bonded almost 2 times stronger than carboxylate groups. In the structure of zinc compound exist O–H···O hydrogen bonds and in both structures can be found weak C–H···O hydrogen bonds. Additionally, both compounds are pile-stacked by π···π interactions. The IR spectra show typical vibrations for chelating 2,2′-bipyridine molecules and terminal monodentate carboxylate groups. The thermal decomposition studies show zinc compound decomposes in 4 steps and cadmium compound decomposes in 5 steps with formation of oxides as a final products. The ligands decompose gradually, first dichloroacetates and next 2,2′-bipyridine.  相似文献   

17.
 For the intermolecular interaction energies of ion-water clusters [OH(H2O) n (n=1,2), F(H2O), Cl(H2O), H3O+(H2O) n (n=1,2), and NH4 +(H2O) n (n=1,2)] calculated with correlation-consistent basis sets at MP2, MP4, QCISD(T), and CCSD(T) levels, the basis set superposition error is nearly zero in the complete basis set (CBS) limit. That is, the counterpoise-uncorrected intermolecular interaction energies are nearly equal to the counterpoise-corrected intermolecular interaction energies in the CBS limit. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are more reliable than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable. Received: 14 March 2001 / Accepted: 25 April 2001 / Published online: 9 August 2001  相似文献   

18.
A new compound of C17H20FN3O32+ · 2HSO4·H2O [ciprofloxacindi-um bis(hydrosulfate) monohydrate], C17H18FN3O3 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid (CfH, ciprofloxacin) is obtained and its crystal structure is determined. The crystal contains CfH32+ and HSO4 ions and crystallization water molecules. Hydrogen (H3), which forms an intramolecular hydrogen bond with oxygen O2 of the carboxyl group, is attached to the carbonyl O1 atom. Hydrogen H4 of the carboxyl group is hydrogen bonded to the crystallization water molecule which links CfH32+ with two HSO4 groups by hydrogen bonds. Both H atoms at N3 of the piperazine ring form hydrogen bonds with two oxygen atoms of other HSO4 anions. Intramolecular hydrogen bonds of two types are present in the CfH32+ cation. One of them forms a six-membered ring, bonding O1 and O2 atoms, while the other, also enclosing a six-membered ring, links fluorine and carbon C14 atoms. Original Russian Text Copyright ? 2009 by A. D. Vasiliev, N. N. Golovnev, and I. A. Baidina __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 1, pp. 165–168, January–February, 2009.  相似文献   

19.
Three heteonuclear complexes containing [V10O28]6− units, {[Cu(pyr)(H2O)4]2(H3O)2[V10O28] · 13.5H2O}n (1), {[Ni(pyr)(H2O)4]2(H3O)2[V10O28] · 9.5H2O}n (2) and [Zn2(H2O)14(V10O28)] · H2PPZ (3) are synthesized and characterized by elemental analyses, IR, single crystal X-ray analyses. The complex 1 and 2 have the similar structures which are composed of the [V10O28]6− cluster anion and 1D chain {[M (pyr)(H2O)4]2+}n (M = Cu Ni) cations bridged by pyrazine. In the complex 3, Zn2+ with two coordination modes is bridged by water molecules to build 1D zigzag chains, and then is linked to the bridging oxygen atoms from [V10O28]6− to generate a 2D grid architecture filled with the protoned piperazine (PPZ) molecules. In this paper, the magnetic properties of complex 2 are characterized.  相似文献   

20.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号