首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P-AlGaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers.The simulation results show that efficiency droop is markedly improved due to two reasons:(i) enhanced hole concentration and hole carrier transport efficiency in AlGaN/GaN superlattices,and(ii) enhanced blocking of electron overflow between multiple quantum-wells and AlGaN/GaN superlattices.  相似文献   

2.
The effects of InGaN light-emitting diodes (LEDs) with InGaN and composition-graded InGaN interlayers in the space of multiple quantum wells and electron blocking layer are studied numerically. The electrostatic field, energy band diagrams, carrier concentrations, light–current–voltage performances, and internal quantum efficiency (IQE) are investigated. Simulation results show that the light output power and IQE are both largely improved over the conventional LED structure due to the improvement in hole injection efficiency and electron blocking capability, especially for the LED with composition-graded InGaN interlayer.  相似文献   

3.
The blue InGaN light-emitting diodes (LEDs), employing a lattice-compensated p-AlGaN/InGaN superlattice (SL) interlayer to link the last quantum barrier and electron blocking layer (EBL), are proposed and investigated numerically. The simulation results indicate that the newly designed LEDs have better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region over the conventional LEDs mainly attributed to the mitigated polarization-induced downward band bending. Furthermore, the markedly improved output power and efficiency droop are also suggested when the conventional LEDs corresponding to experiment data are replaced by the newly designed LEDs.  相似文献   

4.
An InGaN light-emitting diodes with a leakage electron recombination (LER) quantum well have been proposed and investigated numerically by using the APSYS simulation software. The simulation results indicate that the AlGaN electron blocking layer inserted between the last two quantum wells changed the carrier concentrations distribution, and the leakage electrons can be further recombined with holes in the LER quantum well which can decrease the electrons that spill out from active region. As a result, the internal quantum efficiency and light output power are markedly improved attributed to LER quantum well.  相似文献   

5.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

6.
InGaN-based light-emitting diodes with graded indium composition p-type InGaN hole reservoir layer (HRL) are numerically investigated using the APSYS simulation software. It is found that by gradient increasing indium composition in growth direction of the p-InGaN HRL can improve light output power, lower current leakage and efficiency droop. Based on numerical simulation and analysis, these improvements on the electrical and optical characteristics are attributed mainly to tailoring energy band in p–n junction vicinal region, and finally enhanced the hole injection efficiency and electron blocking efficiency.  相似文献   

7.
Kuo YK  Chang JY  Tsai MC 《Optics letters》2010,35(19):3285-3287
Some specific designs on the electron blocking layer (EBL) of blue InGaN LEDs are investigated numerically in order to improve the hole injection efficiency without losing the blocking capability of electrons. Simulation results show that polarization-induced downward band bending is mitigated in these redesigned EBLs and, hence, the hole injection efficiency increases markedly. The optical performance and efficiency droop are also improved, especially under the situation of high current injection.  相似文献   

8.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.  相似文献   

9.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

10.
The efficiency enhancement of an InGaN light-emitting diode(LED) with an AlGaN/InGaN superlattice(SL)electron-blocking layer(EBL) is studied numerically,which involves the light-current performance curve,internal quantum efficiency electrostatic field band wavefunction,energy band diagram carrier concentration,electron current density,and radiative recombination rate.The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram,which is favorable for the injection of holes and confinement of electrons.Additionally,the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

11.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

12.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

13.
王兵  李志聪  姚然  梁萌  闫发旺  王国宏 《物理学报》2011,60(1):16108-016108
本文利用金属有机物化学气相沉积(MOCVD)方法系统地研究了p-AlGaN层掺杂机理及优化设计生长. 明确了生长温度、压力及TMAl的流量对AlGaN层Al组分的影响关系,并给出了各自不同的机理与作用. 研究发现,Al组分介于10%—30%之间能够很好地将电子限定在量子阱区域并保持高的材料晶体质量. 发展了一种新的生长技术来克服p-AlGaN层掺入效率低下和空穴注入不足的问题. 优化条件下生长的p型AlGaN电子阻挡层很大地提升了InGaN/GaN基LED的输出光功率. 关键词: 氮化镓基 LED Al组分 电子阻挡层  相似文献   

14.
刘木林  闵秋应  叶志清 《物理学报》2012,61(17):178503-178503
InGaN/GaN基阱垒结构LED当注入的电流密度较大时, LED的量子效率随注入电流密度增大而下降, 即droop效应.本文在Si (111)衬底上生长了 InGaN/GaN 基蓝光多量子阱结构的LED,通过将实验测量的光电性能曲线与利用ABC模型模拟的结果进行对比, 探讨了droop效应的成因.结果显示:温度下降会阻碍电流扩展和降低空穴浓度, 电子在阱中分布会越来越不平衡,阱中局部区域中因填充了势能越来越高的电子而溢出阱外, 从而使droop效应随着温度的降低在更小的电流密度下出现且更为严重, 不同温度下实验值与俄歇复合模型模拟的结果在高注入时趋势相反.这此结果表明,引起 droop效应的主因不是俄歇非辐射复合而是电子溢出,电子溢出的本质原因是载流子在阱中分布不均衡.  相似文献   

15.
Influences of the Si doping on the structural and optical properties of the InGaN epilayers are investigated in detail by means of high-resolution X-ray diffraction (HRXRD), photolumimescence (PL), scanning electron microscope (SEM), and atomic force microscopy (AFM). It is found that the Si doping may improve the surface morphology and crystal quality of the InGaN film and meanwhile it can also enhance the emission efficiency by increasing the electron concentration in the InGaN and suppressing tile formation of V-defects, which act as nonradiative recombination centers in the InGaN, and it is proposed that the former plays a more important role in enhancing the emission efficiency in the InGaN.  相似文献   

16.
The physical mechanisms leading to the efficiency droop of InGaN/GaN light-emitting diodes (LEDs) are theoretically investigated. We first discuss the effect of Auger recombination loss on efficiency droop by taking different Auger coefficients into account. It is found that the Auger recombination process plays a significant nonradiative part for carriers at typical LED operation currents when the Auger coefficient is on the order of 10−30 cm6 s−1. Furthermore, the InGaN/GaN multiple-quantum-well (MQW) LEDs with varied indium compositions in InGaN quantum wells are studied to analyze the wavelength-dependent efficiency droop. The simulation results show that the wavelength-dependent efficiency droop is caused by several different effects including non-uniform carrier distribution, electron overflow, built-in electrostatic field induced by spontaneous and piezoelectric polarization, and Auger recombination loss. These internal physical mechanisms are the critical factors resulting in the wavelength-dependent efficiency droop in InGaN/GaN MQW LEDs.  相似文献   

17.
《中国物理 B》2021,30(9):97201-097201
To study the electron transport properties in InGaN channel-based heterostructures,a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier.Various scattering mechanisms,such as dislocation impurity(DIS) scattering,polar optical phonon(POP) scattering,piezoelectric field(PE) scattering,interface roughness(IFR) scattering,deformation potential(DP) scattering,alloy disorder(ADO) scattering from InGaN channel layer,and temperature-dependent energy bandgaps are considered in the calculation model.A contrast of AlInGaN/AlN/InGaN/GaN double heterostructure(DH) to the theoretical AlInGaN/AlN/InGaN single heterostructure(SH) is made and analyzed with a full range of barrier alloy composition.The effect of channel alloy composition on InGaN channel-based DH with technologically important Al(In,Ga)N barrier is estimated and optimal indium mole fraction is 0.04 for higher mobility in DH with Al_(0.4)In_(0.07)Ga_(0.53)N barrier.Finally,the temperature-dependent two-dimensional electron gas(2 DEG) density and mobility in InGaN channel-based DH with Al_(0.83)In_(0.13)Ga_(0.0)4 N and Al_(0.4)In_(0.07)Ga_(0.53)N barrier are investigated.Our results are expected to conduce to the practical application of InGaN channel-based heterostructures.  相似文献   

18.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

19.
The optical properties of InGaN multi-quantum-well laser diodes with different polarization-matched AlInGaN barrier layers have been investigated numerically by employing an advanced device simulation program. The use of quaternary polarization-matched AlInGaN barrier layers enhances the electron–hole wave function overlap due to the compensation of polarization charges between InGaN quantum well and AlInGaN barrier layer. According to the simulation results, it is found that, among the polarization-matched quantum-well structures under study, lower threshold current and higher slope efficiency can be achieved simultaneously when the aluminum composition in AlInGaN barrier layers is about 10–15%. The optimal polarization-matched InGaN/AlInGaN laser diode shows lower threshold current and higher slope efficiency compared to conventional InGaN/InGaN laser diodes.  相似文献   

20.
A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells(MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence(PL) properties of the InGaN/AlInGa N MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs(76.1%) is much higher than that of InGaN/GaN MQWs(21%).The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号