首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
孙新梅  查新未  祁建霞  兰倩 《物理学报》2013,62(23):230302-230302
本文提出了一个新的未知量子态共享方案,使用一个非最大纠缠的五粒子Cluster态作为量子通道来实现任意两粒子未知量子态的共享. 即就是发送方(Alice),接收方(Bob)和控制方(Charlie)共享一个非最大纠缠的五粒子Cluster态. 与以前传统方案不同,在本方案中发送方引入一个辅助粒子,并对其手中的粒子进行正交完备基测量,而接收方不需要引入辅助粒子,只需要执行适当的幺正操作,即可以方便的完成信息的顺利接收. 控制方通过对自己手中的粒子做单粒子投影测量来控制和协助通信双方,使得任意两粒子的未知量子态共享方案得以成功实现. 关键词: 量子态共享 五粒子Cluster态 正交完备基测量 单粒子投影测量  相似文献   

2.
通过对五粒子团簇态新应用的研究,提出了一个经济和简单的二粒子任意态的可控隐形传态方案.在这个方案中,发送者(Alice)、控制者(Charlie)和接收者(Bob)共享一个五粒子团簇态,发送者只需要执行Bell基测量,而控制者也仅需要执行单粒子投影测量.接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,就可以重建发送者的二粒子任意态.这个可控隐形传态方案是决定性的,成功的概率为100%.与使用相同的量子信道进行二粒子任意态的可控隐形传送方案相比,不需要执行多粒子的联合测量,从而使得这个方案更加简单.  相似文献   

3.
刘俊昌  李渊华  聂义友 《光子学报》2014,39(11):2073-2077
通过对五粒子团簇态新应用的研究,提出了一个经济和简单的二粒子任意态的可控隐形传态方案.在这个方案中,发送者(Alice)、控制者(Charlie)和接收者(Bob)共享一个五粒子团簇态,发送者只需要执行Bell基测量,而控制者也仅需要执行单粒子投影测量.接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,就可以重建发送者的二粒子任意态.这个可控隐形传态方案是决定性的,成功的概率为100%.与使用相同的量子信道进行二粒子任意态的可控隐形传送方案相比,不需要执行多粒子的联合测量,从而使得这个方案更加简单.  相似文献   

4.
A new scheme for controlled teleportation of an arbitrary two-particle pure or mixed state with the help of a five-qubit cluster state is proposed in detail. In this scheme, a five-particle cluster state is shared by a sender, a controller and a receiver. At first, the sender performs a four-qubit von-Neumann measurement on the qubits at hand, and the controller performs a Hadamard measurement on his qubit. Then the receiver can reconstruct the arbitrary two-particle pure or mixed state by performing some appropriate unitary transformations on his particles after he knows the measure results of the sender and the controller. This controlled teleportation scheme is deterministic.  相似文献   

5.
基于六粒子纠缠态和Bell态测量的量子信息分离   总被引:2,自引:2,他引:0  
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量;然后控制者执行一次Bell基测量;最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的...  相似文献   

6.
A new application of the genuinely entangled five-qubit state is investigated for quantum information splitting of a particular type of two-qubit state. In this scheme, a genuinely entangled five-qubit state is shared by Alice (a sender), Charlie (a controller) and Bob (a receiver), and Alice only needs to perform two Bell-state measurements and Charlie performs a single-qubit measurement, Bob can reconstruct the two-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both Alice and Charlie. This quantum information splitting scheme is deterministic, i.e. the probability of success is 100 %. The presented protocol is showed to be secure against certain eavesdropping attacks.  相似文献   

7.
刘俊昌  李渊华  聂义友 《光子学报》2014,39(11):2078-2082
提出一个对二粒子任意态的可控隐形传态方案,利用四粒子团簇态作为量子信道,用EPR态实现控制.首先,发送者向控制者提出申请,控制者再对其拥有的2个粒子做Bell基测量,并把结果通知发送者,实现纠缠交换.然后,发送者对自己手中的四个粒子做适当的幺正变换,接着进行纽曼测量,并把结果通知接受者.接受者根据发送者的测量结果,对自己拥有的粒子做适当的幺正变换,就可以重建发送者的二粒子任意态.方案成功的概率为100%.  相似文献   

8.
We propose a three-party scheme for probabilistically teleporting an arbitrary two-qubit state. In the scheme, a one-dimensional five-qubit cluster-class state is utilized as the quantum channel. The sender performs two Bell-state measurements (BSMs) on the qubits at hand and the controller makes a single-qubit measurement. With the sender’s and the controller’s helps, the receiver can reconstruct the original state with a certain probability by introducing an auxiliary qubit and making appropriate unitary operations. Moreover, the total success probability and classical communication cost of the present scheme are also calculated.  相似文献   

9.
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and areceiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.  相似文献   

10.
We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.  相似文献   

11.
提出了一个基于高维2m+1粒子纠缠态的任意m粒子态量子可控离物传态方案,发送方Alice对需传送的未知态量子系统和手中的纠缠粒子执行m个广义Bell基测量,控制方执行广义X基测量,依据预先共享量子纠缠态非定域相关性,接收方对手中的粒子执行相应的幺正操作就可以重建原来未知量子态.与其他方案相比,方案减少了任意高维多粒子态可控离物传送所需传送粒子数.我们进一步讨论了基于纯纠缠信道的概率量子可控离物传态方案,通过与发送方和控制方合作,接收方只需对手中的纠缠粒子和引入的附加粒子执行联合幺正演化和投影测量,就可以在他的粒子上概率的重建原来的未知量子态,最后,方案计算讨论了基于纯纠缠态量子可控离物传态成功概率与信道纠缠度之间的关系.  相似文献   

12.
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.  相似文献   

13.
We propose a scheme for bidirectional quantum teleportation by using a five-qubit cluster state. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice.  相似文献   

14.
We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.  相似文献   

15.

A scheme for the controlled joint remote preparation of an arbitrary six-qubit cluster-type state by using only two sets of five-qubit GHZ states as quantum channel is proposed. In our scheme, Alice firstly performs two sets of two-qubit projective measurement according to the real coefficients and the complex coefficients of the desired six-qubit cluster-type state. Then, the controller Charlie must apply another two-qubit projective measurement according to the Alice’s measurement result. Finally, Bob can obtain the desired six-qubit cluster-type state according to an appropriate unitary operation. Our scheme can achieve unit success probability.

  相似文献   

16.
This paper has proposed a generalized quantum state sharing protocol of an arbitrary two-particle state using non-maximally GHZ states and generalized Bell state measurement.The sender Alice performs two-particle generalized Bell state measurements on her two particles in the state sharing process and the controller takes measurements on his particles and transfers the quantum information to the receiver with entanglement swapping by the cooperation of the other agents.It is found that the use of nonmaximally entangled state in quantum state sharing has enabled the secure sharing of the quantum state.  相似文献   

17.
Two schemes for sharing an arbitrary two-qubit state based on entanglement swapping are proposed with Bell-state measurements and local unitary operations. One is based on the quantum channel with four Einstein-Podolsky-Rosen (EPR) pairs shared in advance. The other is based on a circular topological structure, i.e., each user shares an EPR pair with his neighboring one. The advantage of the former is that the construction of the quantum channel between the agents is controlled by the sender Alice, which will improve the security of the scheme. The circular scheme reduces the quantum resource largely when the number of the agents is large. Both of those schemes have the property of high efficiency as almost all the instances can be used to split the quantum information. They are more convenient in application than the other schemes existing as they require only two-qubit entanglements and two-qubit joint measurements for sharing an arbitrary two-qubit state.  相似文献   

18.
We present an efficient scheme for sharing an arbitrary two-qubit quantum state with n agents. In this scheme, the sender Alice first prepares an n + 2-particle GHZ state and introduces a Controlled-Not (CNOT) gate operation. Then, she utilizes the n + 2-particle entangled state as the quantum resource. After setting up the quantum channel, she performs one Bell-state measurement and another single-particle measurement, rather than two Bell-state measurements. In addition, except that the designated recover of the quantum secret just keeps two particles, almost all agents only hold one particle in their hands respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis X. Compared with other schemes based on entanglement swapping, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.  相似文献   

19.
In this paper, a new scheme of quantum information splitting (8QIS) by using five-qubit state and GHZ-state as quantum channel is proposed. The sender Alice performs Bell-state measurements (BSMs) on her qubit-pairs respectively,then tells her measurement result to the receivers Bob. If Bob wants to reconstruct the original states, he must cooperates with the controller Charlie, that Charlie performs two single particle measurement on his qubits and tells Bob the results. According to Alice’s and Bob’s results, Bob can reconstruct the initial state by applying appropriate unitary operation.  相似文献   

20.
We present an efficient scheme for sharing an arbitrary m-qubitstate with n agents. In our scheme, the sender Alice first shares mBell states with the agent Bob, who is designated to recover the originalm-qubit state. Furthermore, Alice introduces n-1 auxiliary particlesin the initial state |0>, applies Hadamard (H) gate and Controlled-Not (CNOT) gate operations on the particles, which make them entangled with one of m particle pairs in Bell states, and then sends them to the controllers (i.e., other n-1 agents), where each controller only holds one particle in hand. After Alice performing m Bell-basis measurements and each controller a single-particle measurement, the recover Bob can obtain the original unknown quantum state by applying the corresponding local unitary operations on his particles.Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号