首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
By introducing a kind of new quantum state—Photon-added thermo invariant coherent state (PATCS), we discuss its nonclassicality in terms of the negativity of Wigner function (WF) after deriving its analytical expression. It is found that the Wigner function is related to Lagurre-Gaussian function. We then study the effect of decoherence (a thermal environment) on the PATCS according to its WF (also related to Lagurre-Gaussian function). It is shown that it is not possible for WF to present the negative region when the decay time $\kappa t>\frac{1}{2}\ln \frac{2\bar{n}+2}{2\bar{n}+1}$\kappa t>\frac{1}{2}\ln \frac{2\bar{n}+2}{2\bar{n}+1} .  相似文献   

2.
The nonclassicality of the single-variable Hermite polynomial state (SHPS) and its fidelity with squeezed vacuum state are studied in this paper. It is found that the SHPS can be considered as a single mode photon subtracted squeezed vacuum state. A compact expression for the Wigner function (WF) is also derived analytically by using the Weyl-ordered operator invariance under similar transformations. Especially, the nonclassicality is discussed in terms of the negativity of the WF. At last, the fidelity as a non-Gaussianity measure for this state is also discussed.  相似文献   

3.
A kind of non-Gaussian state—variable arcsine state is studied by using the input-output theories which relate the statistical properties of the output field to those of the input field. The variable arcsine state (VAS) is generated by using a variable beam splitter (BS), which means that the transmissivity (reflectivity) of the BS is adjustable continuously. The nonclassicality is investigated by studying the negativity of Wigner function (WF). It is shown that the variable arcsine state has negative values of WF when transmissivity is not equal to 1 or 0. The decoherence effect of the VAS is then studied by analytically deriving the time evolution formula of WF.  相似文献   

4.
There are quantum states of light that can be expressed as finite superpositions of Fock states (FSFS). We demonstrate the nonclassicality of an arbitrary FSFS by means of its phase space distributions such as the Wigner function and the Q-function. The decoherence of the FSFS is studied by considering the time evolution of its Wigner function in amplitude decay and phase damping channels. As examples, we determine the nonclassicality and decoherence of generalized and reciprocal binomial states.  相似文献   

5.
徐莉娟  谭国斌  马善钧  郭琴 《中国物理 B》2013,22(3):30311-030311
The statistical properties of m-coherent superposition operation (μa+νa+)m on the single-mode squeezed vacuum state (M-SSVS) and its decoherence in a thermal environment have been studied. Converting the M-SSVS to a squeezed Hermite polynomial excitation state, we obtain a compact expression for the normalization factor of M-SSVS, which is the Legendre polynomial of the squeezing parameter. We also derive the explicit expression of Wigner function (WF) of M-SSVS, and find the negative region of WF in phase space. The decoherence effect on this state is then discussed by deriving the time evolution of the WF. Using the negativity of WF, the loss of nonclassicality has been discussed.  相似文献   

6.
We introduce a kind of non-Gaussian state—photon-subtracted squeezing-enhanced thermal state (PSSETS) characteristics by two-squeezing parameters (λ,r). Its normalization factor is a Legendre polynomial of two-squeezing parameters and average photon number of the thermal state. The nonclassicality is investigated by using the negativity of Wigner function (WF). It is shown that the single PSSETS always has negative values when . The decoherence effect on PSSETS is then included by analytically deriving the time evolution of WF. For the single PSSETS, the characteristic time is longer than that of photon-subtracted squeezing thermal state.  相似文献   

7.
We define the degree of nonclassicality of a one-mode Gaussian state of the quantum electromagnetic field in terms of the Bures distance between the state and the set of all classical one-mode Gaussian states. We find the closest classical Gaussian state and the degree of nonclassicality using a recently established expression for the Uhlmann fidelity of two single-mode Gaussian states. The decrease of nonclassicality under thermal mapping is carefully analyzed. Along the same lines, we finally present the evolution of nonclassicality during linear amplification.  相似文献   

8.
A measure of nonclassicality of quantum states based on the negative values of the Wigner function (WF) of a charge qubit-field system is proposed. It is found that, the negative values of the field WF are very sensitive to any change in dissipation parameter. The dissipation leads to a long-time death for both entanglement and nonclassicality, and also the coherence of the cavity state is lost completely.  相似文献   

9.
We propose the entanglement potential (EP) as a measure of nonclassicality for quantum states of a single-mode electromagnetic field. It is the amount of two-mode entanglement that can be generated from the field using linear optics, auxiliary classical states, and ideal photodetectors. The EP detects nonclassicality, has a direct physical interpretation, and can be computed efficiently. These three properties together make it stand out from previously proposed nonclassicality measures. We derive closed expressions for the EP of important classes of states and analyze as an example of the degradation of nonclassicality in lossy channels.  相似文献   

10.
《Physics letters. A》2020,384(12):126371
The Jaynes-Cummings model, a fundamental and ideal paradigm for the study of atom-field interaction with remarkable beauty and complexity, plays an instrumental role in cavity quantum electrodynamics and related experiments. The dynamics of both the atom and the field in this ubiquitous model, which exhibit a number of intriguing nonclassical effects, have been widely studied and engineered from various perspectives. In particular, the collapses and revivals for several physical quantities have been revealed, with important implications for quantum foundations and technologies. In this work, we study the atomic nonclassicality in the Jaynes-Cummings model in terms of an information-theoretic quantifier, reveal its basic features, and compare them with various well known observations of atomic dynamics. The sensitivity of the dynamics on both the initial atomic states and field states indicates rich patterns of atom-field interaction, and may be exploited to estimate, prepare, and engineer atomic states via fields, or vice versa.  相似文献   

11.
We solve the dynamics of an open quantum system where N strongly driven two-level atoms are equally coupled on resonance to a dissipative cavity mode. Analytical results are derived on decoherence, entanglement, purity, atomic correlations and cavity field mean photon number. We predict decoherencefree subspaces for the whole system and the N-qubit subsystem, the monitoring of quantum coherence and purity decay by atomic populations measurements, the conditional generation of atomic multi-partite entangled states and of cavity cat-like states. We show that the dynamics of atoms prepared in states invariant under permutation of any two components remains restricted within the subspace spanned by the completely symmetric Dicke states. We discuss examples and applications in the cases N = 3, 4. An erratum to this article can be found at  相似文献   

12.
In this paper, by making use of the nonlinear coherent states approach, the generalized photon added and subtracted f-deformed displaced Fock states are introduced. In other words, a natural link between photon added and subtracted displaced Fock states and nonlinear coherent states associated with nonlinear oscillator algebra is obtained. It is found that various kinds of nonclassical states can be generated by adopting appropriately controlling parameters in both linear and nonlinear regimes. Moreover, examining some of the most nonclassical properties such as Mandel's Q parameter, different types of squeezing, namely, quadrature, amplitude–squared and phase entropic squeezing, and Vogel's characteristic function, the nonclassicality features of the considered quantum states of interest are studied. Furthermore, to obtain the degree of quantum coherence, the relative entropy of coherence is investigated. Indeed, the nonclassicality aspects of the states obtained have been numerically studied to understand the roles of deformation functions, photons added and subtracted, and photon number occupied in the Fock state on physical properties. It is demonstrated that the depth and the domain of the nonclassicality features of the system can properly be controlled by selecting the suitable parameters.  相似文献   

13.
A new kind of non-Gaussian quantum state is constructed by operating the superposed operator (SO) (cos θaa + sin θaa) on a squeezed vacuum state (SVS) S(r)|0〉. It is found that the SOSVS is just a superposition state between S(r)|0〉 and S(r)|2〉 with only even numbers of photons. The nonclassicality is investigated by exploring the negativity of Wigner function (WF) and the sub-Poissonian distribution of Mandel's Q-parameter. The non-Guassianity is exhibited via the fidelity between the SOSVS and the SVS and the marginal distribution of its Wigner function. It is found that such SO on the SVS can enhance the nonclassicality and change the non-Gaussianity of the SOSVS. This provides the possibility of generating quantum states with specific nonclassical and non-Gaussian properties.  相似文献   

14.
We present the exact solution of the dynamics of N two-level atoms strongly driven by an external coherent field and equally coupled on resonance to a cavity mode, in the presence of both cavity dissipation and atomic decay. Analytical results are presented for system and subsystem dynamics, showing how environment-induced decoherence leads the system from pure to mixed states. In the limit of negligible atomic decay, where the system is known to exhibit decoherence-free subspaces, we present a detailed discussion of the decoherence function that can be monitored by atomic population measurements.  相似文献   

15.
Ion storage rings and ion traps provide the very first opportunity to address nuclear beta decay under conditions prevailing in hot stellar plasmas during nucleosynthesis, i.e. at high atomic charge states. Experiments are summarized that were performed in this field during the last decade at the ion storage-cooler ring ESR in Darmstadt. Special emphasis is given to the first observation of bound-state beta decay, where the created electron remains bound in an inner orbital of the daughter atom. The impact of this specific ‘stellar’ decay mode for s-process nucleosynthesis as well as for nuclear ‘eon clocks’ is outlined. Finally, a new technique, single-ion decay spectroscopy, is presented, where one observes two-body beta decay characteristics (i.e. orbital electron capture or bound-state beta decay) of highly charged, single ions for well-defined nuclear and atomic quantum states of both the mother – and the daughter – ion.  相似文献   

16.
李蓬勃  李福利 《中国物理 B》2011,20(9):90304-090304
A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state Λ-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.  相似文献   

17.
We analytically study the Wigner function (WF) for the two-variable Hermite polynomial state (TVHPS) and the effect of decoherence on the TVHPS in thermal environment. The nonclassicality of the TVHPS is investigated in terms of the partial negativity of the WF which depends on the polynomial orders m,n and the squeezing parameter r. We also investigate how the WF for the TVHPS evolves in the thermal environment. At long times, the TVHPS decays to thermal, a mixed Gaussian state, within the thermal environment.  相似文献   

18.
Nonclassical properties of photon added and subtracted displaced Fock states are studied using various witnesses of lower‐ and higher‐order nonclassicality. Compact analytic expressions are obtained for the nonclassicality witnesses. Using those expressions, it is established that these states and the states that can be obtained as their limiting cases (except coherent states) are highly nonclassical as they show the existence of lower‐ and higher‐order antibunching and sub‐Poissonian photon statistics, in addition to the nonclassical features revealed through the Mandel Q M parameter, zeros of Q function, Klyshko's criterion, and Agarwal–Tara criterion. Further, some comparison between the nonclassicality of photon added and subtracted displaced Fock states have been performed using witnesses of nonclassicality. This has established that between the two types of non‐Gaussianity inducing operations (i.e., photon addition and subtraction) used here, photon addition influences the nonclassical properties more strongly. Further, optical designs for the generation of photon added and subtracted displaced Fock states from squeezed vacuum state have also been proposed.  相似文献   

19.

We investigate the entanglement dynamics of two atoms in a double damping Jaynes-Cummings model. The two atoms are initially in the Bell states and each is in a squeezed vacuum cavity field or coherent cavity field. Compared with the case in coherent field, the atomic entanglement in the squeezed vacuum field is stronger under the same conditions. The results show that we can adopt appropriate parameters such as mean photon number, detuning, the atomic spontaneous decay and the cavity decay, to realize better control of atomic entanglement in quantum information processing. What’s worth mentioning is that proper choosing of the last two parameters enables us to decrease disentanglement period and postpone the moment when the entanglement disappears. Finally, the atomic entanglement in double damping and non-identical Jaynes-Cummings model is obtained

  相似文献   

20.
Using a non-Gaussian operation—photon subtraction from two-mode squeezed thermal state (PS-TMSTS), we construct a kind of entangled state. A Jacobi polynomial is found to be related to the normalization factor. The negativity of Wigner function (WF) is used to discuss its nonclassicality. The investigated entanglement properties turn out that the symmetrical PS-TMSTS may be more effective than the non-symmetric for quantum teleportation. Then the time evolution of WF is used to examine the decoherence effect, which indicates that the characteristic time of single PS-TMSTS depends not only on the average photon number of environment, but also on the average photon number of thermal state and the squeezing parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号