首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper experimental and numerical results concerning the dynamic response of composite sandwich beams with curvature and debonds are reported. Sandwich beams made of carbon/epoxy face sheets and polyurethane foam core material were manufactured with four different radii of curvature and debonds between the top and bottom interface of face sheet and foam core. Dynamic response was obtained using the impulse frequency response technique under clamped-clamped boundary condition. Experimental results were compared with numerical finite element model results. A combined experimental and numerical FE approach was used to determine the material properties of the skin and foam core materials based on modal vibration and static flexure tests. Results indicate that the fundamental frequency increases with increasing curvature angle, however, for higher frequencies; the natural frequencies are not significantly affected. Also, it is found that face/core debond causes reduction of the natural frequencies due to stiffness degradation.  相似文献   

2.
The present paper proposes a novel approach to the identification of the mechanical properties of individual component layers of a bimetallic sheet. In this approach, a set of material parameters in a constitutive model of cyclic elasto-plasticity are identified for the two layers of the sheet simultaneously by minimizing the difference between the experimental results and the corresponding results of numerical simulation. This method has an advantage of using the experimental data (tensile load vs strain curve in the uniaxial tension test and the bending moment vs curvature diagram in the cyclic bending test) for a whole bimetallic sheet but not for individual component layers. An optimization technique based on the iterative multipoint approximation concept is used for the identification of the material parameters. This paper describes the experimentation, the fundamentals and the technique of the identification, and the verification of this approach using two types of constitutive models (the Chaboche-Rousselier and the Prager models) for an aluminum clad stainless steel sheet.  相似文献   

3.
In this paper, atomistic–continuum coupled model for nonlinear flexural response of single layer graphene sheet is presented considering von-Karman geometric nonlinearity and material nonlinearity due to atomic interactions. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that of at atomic level through Cauchy–Born rule. Strain and curvature dependent tangent in-plane extensional, bending–extension coupling, bending stiffness matrices are derived from strain energy density function constructed through Tersoff–Brenner potential. The finite element method is used to discretize the graphene sheet at continuum level and nonlinear bending response with and without material nonlinearity is studied. The present results are also compared with Kirchhoff plate model and significant differences at higher load are observed. The effects of other parameters like number of atoms in the graphene sheet, boundary conditions on the central/maximum deflection of graphene sheet are investigated. It is also brought out that the occurrence of bond length exceeding cutoff distance initiates at corners for CFCC, CFCF, SFSS, SFSF graphene sheets and near center for SSSS and CCCC graphene sheets.  相似文献   

4.
Experiments have shown that magnesium alloy sheet a common hexagonal close-packed metal, exhibits mechanical behavior unlike that of sheets made of cubic metals (X.Y. Lou et al., 2007, Int. J. Plasticity, 24, 44). The unique stress–strain response includes a strong asymmetry in the initial yield and subsequent plastic hardening. In other words, the stress–strain curves in tension and compression are significantly different. A proper representation of the constitutive relationships is crucial for the accurate evaluation of springback, which occurs due to the residual moment distribution through the sheet thickness after bending. In this paper, we propose an analytical model for asymmetric elasto-plastic bending under tension followed by elastic unloading in order to evaluate the bending moment, which is equivalent to the springback amount. To simplify the calculations, the experimentally measured stress–strain curve of the magnesium alloy sheet was approximated with discrete linear hardening in each deformation region, and the material properties were characterized according to several simplifying assumptions. The bending moment was calculated analytically using the approximate asymmetric stress–strain relationship up to the prescribed curvature corresponding to the radius of the tool in sheet metal forming operations. A numerical example showed an unusual springback increase, even with an increase in the applied force; this is an unexpected result for conventional symmetric materials. We also compared the calculated springback amounts with the results of physical measurements. This showed that the proposed model predicts the main trends of the springback in magnesium alloy sheets reasonably well considering the simplicity of the analytical approach.  相似文献   

5.
We present a model of transverse bending of a wide thin elastic, elastoplastic, or rigid-plastic strip by a circular tool in the case of large displacements. The bending of the initial rectilinear strip is modeled by small increments in the load on the tool with analysis of the forces, moments, curvature, and the midline equation. The final form of the strip and the residual stresses are determined after elastic unloading. The model describes technological operations of sheet slab bending in dies and on roller-bending machines.  相似文献   

6.
We study the onset of delamination blisters in a growing elastic sheet adhered to a flat stiff substrate. When the ends of the sheet are kept fixed, its growth causes residual stresses that lead to delamination. This instability can be viewed as a discontinuous buckling between the complete adhered solution and the buckled solution. We provide an analytic expression for the critical deformation at which the instability occurs. We show that the critical threshold scales with a single dimensionless parameter that comprises information from the geometry of the sheet, the mechanical parameters of material and the adhesive features of the substrate.  相似文献   

7.
8.
Draw-bend springback shows a sudden decline as the applied sheet tension approaches the force to yield the strip. This phenomenon coincides with the appearance of persistent anticlastic curvature, which develops during the forming operation and is maintained during unloading under certain test conditions. In order to understand the mechanics of persistent anticlastic curvature and its dependence on forming conditions, aluminum sheet strips of widths ranging from 12 to 50 mm were draw-bend tested with various sheet tensions and tool radii. Finite element simulations were also carried out, and the simulated and measured springback angle and anticlastic curvature were compared. Analytical methods based on large deformation bending theory for elastic plates were employed to understand the occurrence and persistence of the anticlastic curvature. The results showed that the final shape of a specimen cross-section is determined by a dimensionless parameter, which is a function of sheet width, thickness and radius of the primary curvature in the curled region of an unloaded sample. When the normalized sheet tension approaches 1, this parameter rapidly decreases, and significant anticlastic deflection is retained after unloading. The retained anticlastic curvature greatly increases the moment of inertia for bending, and thus reduces springback angle.  相似文献   

9.
The process of unloading of an elastic–plastic loaded sphere in contact with a rigid flat is studied by finite element method. The sphere material is assumed isotropic with elastic-linear hardening. The numerical simulations cover a wide range of material properties and sphere radius. The contact load, stresses, and deformation in the sphere during both loading and unloading, are calculated for a wide range of interferences. Analytical dimensionless expressions are presented for the unloading load–deformation relation, the residual interference and the residual curvature of the sphere after complete unloading. A new measure termed elastic–plastic loading index is introduced to indicate the plasticity level of the loaded sphere. Some ideas regarding reversibility of the unloading process and elasticity of multiple loading unloading are also presented.  相似文献   

10.
The perturbations in a nearly flat vortex sheet will initially grow due to Kelvin-Helmholtz instability. Asymptotic analysis and numerical computations of the subsequent nonlinear evolution show several interesting features. At some finite time the vortex sheet develops a singularity in its shape; i.e. the curvature becomes infinite at a point. This is immediately followed by roll-up of the sheet into an infinite spiral. This paper presents two mathematical results on nonlinear vortex sheet evolution and singularity formation: First, for sufficiently small analytic perturbations of the flat sheet, existence of smooth solutions of the Birkhoff-Rott equation is proved almost up to the expected time of singularity formation. Second, we present a construction of exact solutions that develop singularities (infinite curvature) in finite time starting from analytic initial data. These results are derived within the framework of analytic function theory.  相似文献   

11.
Equations which govern the behavior of an elastic unsymmetrical, orthotropic sandwich shell of double curvature with orthotropic core having different elastic characteristics under uniform heating are derived. The face sheet may be of unequal thickness of different materials. However, a restriction that the radii of curvature of the shell elements be large compared with the overall thickness of the sandwich shell is imposed. The variational procedure has been used to obtain the five equations which govern the behavior of the heated orthotropic sandwich shell for the stability. In case of symmetry the equations resemble with those of Grigolyuk. Finally, the numerical results of a square or a rectangular simply supported curved plate section of a cylindrical shell under thermal loading have been computed and compared with other known results. The graphs have been drawn to show the effects of different sandwich material for immovable and movable edge conditions.  相似文献   

12.
An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted to develop a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. Hill's quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The approximate macroscopic anisotropic yield criterion is a function of the anisotropy parameter R, defined as the ratio of the transverse plastic strain rate to the through-thickness plastic strain rate under in-plane uniaxial loading conditions. The Marciniak–Kuczynski approach is employed here to predict failure/plastic localization by assuming a slightly higher void volume fraction inside randomly oriented imperfection bands in a material element of interest. The effects of the anisotropy parameter R, the material/geometric inhomogeneities, and the potential surface curvature on failure/plastic localization are first investigated. Then, a non-proportional deformation history including relative rotation of principal stretch directions is identified in a critical element of a mild steel sheet under a fender forming operation given as a benchmark problem in the 1993 NUMISHEET conference. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that the gradual rotation of principal stretch directions lowers the failure strains of the critical element under the given non-proportional deformation history.  相似文献   

13.
A combined necking and shear localization analysis is adopted to model the failures of two aluminum sheets, AA5754 and AA6111, under biaxial stretching conditions. The approach is based on the assumption that the reduction of thickness or the necking mode is modeled by a plane stress formulation and the final failure mode of shear localization is modeled by a generalized plane strain formulation. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for the potential surface curvature, material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Specifically, the necking/shear failure of the aluminum sheets is modeled under uniaxial tension, plane strain tension and equal biaxial tension. The results based on the mechanics model presented in this paper are in agreement with those based on the forming limit diagrams (FLDs) and tensile tests. When the necking mode is suppressed, the failure strains are also determined under plane strain conditions. These failure strains can be used as guidances for estimation of the surface failure strains on the stretching sides of the aluminum sheets under plane strain bending conditions. The estimated surface failure strains are higher than the failure strains of the forming limit diagrams under plane strain stretching conditions. The results are consistent with experimental observations where the surface failure strains of the aluminum sheets increase significantly on the stretching sides of the sheets under bending conditions. The results also indicate that when a considerable amount of necking is observed for a sheet metal under stretching conditions, the surface failure strains on the stretching sides of the sheet metal under bending conditions can be significantly higher.  相似文献   

14.
A new analytic solution for plane strain bending under tension of a sheet is proposed for elastic-plastic, isotropic, incompressible, strain-hardening material at large strains. Numerical treatment is only necessary to calculate ordinary integrals and solve transcendental equations. No restriction is imposed on the hardening law. All governing equations and boundary conditions are exactly satisfied. The only exception is that the actual stress distribution over the ends of the sheet is replaced with a concentrated force and a concentrated bending moment. The through-thickness distribution of residual stresses and a measure of springback are also found. The range of validity of the solution is determined. An illustrative example is provided for Swift’s hardening law.  相似文献   

15.
The mechanical behavior of a metallic sandwich sheet material composed of two flat face sheets and two bi-directionally corrugated core layers is analyzed in detail. The manufacturing of the sandwich material is simulated to obtain a detailed unit cell model which accounts for the non-uniform thickness distribution and residual stresses associated with the stamping of the core layers. Virtual experiments are performed by subjecting the unit cell model to various combinations of bi-axial in-plane loading including the special cases of uniaxial tension, uniaxial compression, equi-biaxial tension and shear. The results demonstrate that the core structure’s contribution to the in-plane load carrying capacity of the sandwich sheet material is similar to that of the face sheets. The numerical results are also used to identify the effective yield surface and hardening response of both the core layer and the face sheets. An anisotropic yield function with linear pressure dependency is proposed to approximate the equal-plastic work surfaces for the core structure and face sheets. Furthermore, a new two-surface model with non-linear interpolation based on plastic work density is presented to describe the observed combined isotropic-distortional hardening of the core structure.  相似文献   

16.
Asymptotic methods are employed to derive the leading-order equations which govern the fluid dynamics of time-dependent, incompressible, planar liquid sheets at low Reynolds numbers using as small parameter the slenderness ratio. Analytical and numerical solutions of relevance to both steady film casting processes and plane stagnation flows are obtained with the leading-order equations. It is shown that for steady film casting processes the model which accounts for both gravity and low-Reynolds-number effects predicts thicker and slower planar liquid sheets than those which neglect a surface curvature term or assume that Reynolds number is zero, because the neglect of the curvature term and the assumption of zero Reynolds number are not justified at high take-up velocities owing to the large velocity gradients that occur at the take-up point. It is also shown that for Reynolds number/Froude number ratios larger than one, models which neglect the surface curvature or assume a zero Reynolds number predict velocity profiles which are either concave or exhibit an inflection point, whereas the model which accounts for both curvature and low-Reynolds-number effects predicts convex velocity profiles. For plane stagnation flows it is shown that models which account for both low-Reynolds-number and curvature effects predict nearly identical results to those of models which assume zero Reynolds number. These two models also predict a faster thickening of the planar liquid sheet than models which account for low- Reynolds-number effects but neglect the surface curvature. This curvature term is very large near the stagnation point and cannot be neglected there. It is also shown that the thickening of the sheet occurs closer to the stagnation point as the Reynolds number/Froude number ratio is increased, i.e. as the magnitude of the gravitational acceleration is increased. In addition it is shown that large surface tension introduces a third-order spatial derivative in the axial momentum equation at leading order.  相似文献   

17.
This paper presents a study on stretch-induced wrinkling of thin polyethylene sheets when subjected to uniaxial stretch with two clamped ends. Three-dimensional digital image correlation was used to measure the wrinkling deformation. It was observed that the wrinkle amplitude increased as the nominal strain increased up to around 10%, but then decreased at larger strain levels. This behavior is consistent with results of finite element simulations for a hyperelastic thin sheet reported previously (Nayyar et al., 2011). However, wrinkles in the polyethylene sheet were not fully flattened out at large strains (>30%) as predicted for the hyperelastic sheet, but exhibited a residual wrinkle whose amplitude depended on the loading rate. This is attributed to the viscoelastic response of the material. Two different viscoelastic models were adopted in finite element simulations to study the effects of viscoelasticity on wrinkling and to improve the agreement with the experiments, including residual wrinkles and rate dependence. It is found that a parallel network model of nonlinear viscoelasticity is suitable for simulating the constitutive behavior and stretch-induced wrinkling of the polyethylene sheets.  相似文献   

18.
While anodic bonding is commonly used in a variety of microelectromechanical systems (MEMS) applications, devices and substrates that incorporate this processing technique are often subjected to significant residual stress and curvature that create post-processing and reliability issues. Here, using an anisothermal anodic bonding procedure, residual stresses and the resulting wafer curvature in these structures are controlled by varying the initial bond temperatures of the silicon and Pyrex wafers independently. Residual stresses are quantified by measuring bulk wafer curvature and, locally, stress concentrations are measured using infrared photoelasticity accompanied by 3-D thermomechanical finite element analysis. Based on the good agreement between numerical predictions and experimental results, this process can be used to determine the bulk post-bond wafer curvature and to reduce the likelihood of structural failure at these sites, by changing the residual stresses from tensile in nature, which may drive initiation and growth of cracks, to compressive, which can suppress such failures.  相似文献   

19.
Finite deformation rigid plastic and elastic–plastic analyses of plane strain pure bending of a plastically anisotropic sheet is presented. An efficient method for finding the exact solution is proposed by extending the previously developed method to the stage of unloading. Using this method the solutions are obtained in closed form or reduced to a numerical treatment of ordinary integrals, or an ordinary differential equation, or transcendental equations. An effect of plastic anisotropy and elastic properties on the bending moment is analyzed. The distribution of residual stresses is illustrated and an effect of material and process parameters on springback is investigated.  相似文献   

20.
The flow of a three-dimensional sheet on a curved wall is considered. Gravity and surface tension forces act on the sheet while a droplet stream falls on its free surface. The systems of equations of viscous incompressible fluid dynamics on a curved rigid surface and the boundary conditions with allowance for the falling droplet stream are formulated. The problems of steady axisymmetric motion of the sheet on cylindrical and conical surfaces are considered. The effect of the curvature of the rigid wall on the solution is examined. Kharkov. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–50, July–August, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号