首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

2.
The theory of a vibrating-rod viscometer   总被引:3,自引:0,他引:3  
The paper presents a complete theory for a viscometer based upon the principle of a circular-section rod, immersed in a fluid, performing transverse oscillations perpendicular to its axis. The theory is established as a result of a detailed analysis of the fluid flow around the rod and is subject to a number of criteria which subsequently constrain the design of an instrument. Using water as an example it is shown that a practical instrument can be designed so as to enable viscosity measurement with an accuracy of ±0.1%, although it is noted that many earlier instruments failed to satisfy one or more of the newly-established constraints.Nomenclature A, D constants in equation (46) - A m , B m , C m , D m constants in equations (50) and (51) - A j , B j constants in equation (14) - a j + , a j wavenumbers given by equation (15) - C f drag coefficient defined in equation (53) - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - f(z) initial deformation of rod - f(), F m () functions of defined in equation (41) - F force in the rod - force per unit length near t=0 - F dimensionless force per unit length near t=0 - g m amplitude of transient force - G modulus of rigidity - h, h* functions defined by equations (71) and (72) - H functions defined by equation (69) and (70) - I second moment of area - I 0,1, J 0,1, K 0,1 modified Bessel functions - k, k functions defined in equations (2) - L half-length of oscillator - Ma Mach number - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equations (15) and (16) - R radius of rod - R c radius of container - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - y 0 initial lateral displacement - y 1, y 2 successive maximum lateral displacement - z axial coordinate - dimensionless tension - dimensionless mass of fluid - dimensionless drag of fluid - amplification factor - logarithmic decrement in a fluid - a , b logarithmic decrement in fluids a and b - 0 logarithmic decrement in vacuo - j logarithmic decrement in mode j in a fluid - spatial resolution of amplitude - v voltage resolution - r, , , s, , increments in R, , , s , , - dimensionless amplitude of oscillation - dimensionless axial coordinate - angular coordinate - f thermal conductivity of fluid - viscosity of fluid - viscosity of fluid calculated on assumption that * - a , b viscosity of fluids a and b - m constants in equation (10) - dimensionless displacement - j j the component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - spatial component of defined in equation (11) - j , tm jth, mth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - streamfunction - dimensionless frequency (based on ) - angular frequency - 0 angular frequency in absence of fluid and internal damping - j angular frequency in mode j in a fluid - a , b frequencies in fluids a and b  相似文献   

3.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

4.
Summary This note presents an exact solution for the stress and displacement field in an unbounded and transversely constrained elastic medium resulting from the motion of a plane heat source travelling through the medium at constant speed in the direction normal to the source plane.Nomenclature mass density - diffusivity - thermal conductivity - Q heat emitted by plane heat source per unit time per unit area - speed of propagation of plane heat source - shear modulus - Poisson's ratio - T temperature - x, y, z normal stress components - u x, uy, uz displacement components - c speed of irrotational waves - t time - x, y, z Cartesian coordinates - =x–vt moving coordinate  相似文献   

5.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

6.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

7.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

8.
Steady and unsteady local concentration has been determined analytically for two- und three-dimensional sources and is presented for various boundary-concentrations, volumetric flows and diffusion coefficients. The steady cases have been evaluated numerically. In addition an unsteady two-dimensional mass transport has been evaluated.
Stofftransport in Quellströmungen
Zusammenfassung Es wurden die stationäre und instationäre örtliche Konzentration von einer zwei- und drei-dimensionalen Quellströmung als Funktion verschiedener Randkonzentrationen, verschiedener Stromvolumen und Diffusionskoeffizienten analytisch bestimmt. Die stationären Fälle wurden numerisch ausgewertet. Außerdem wurde ein zwei-dimensionaler instationärer Stofftransport behandelt.

Nomenclature a inner radius of circle (2-dimensional case), inner radius of sphere (three-dimensional case) - b } >a outer radius of circle (2-dimensional case), outer radius of sphere (three-dimensional case) - c concentration - c 1,c 2 given concentration at the boundariesr=a andb resp - c i initial concentration at the timet=0 - D diffusion coefficient - I n +1/2 modified spherical Bessel function - J v ,Y v Bessel function ofv-th order and first and second kind resp - k =b/a} > 1 diameter ratio - P n o () Legendre polynomials - ¯ r, polar coordinates - r, , spherical coordinates - t time - u velocity in radial direction - V 0 volumetric flow - 0 V/4D flow parameter for two-dimensional flow - 0 V 0/8 D flow parameter for three-dimensional flow - mn eigenvalues - mn te] 2 =n 2 + 0 2 ,=cos =r/a roots of determinant (28)  相似文献   

9.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

10.
The cross-correlation technique and Laser Induced Fluorescence (LIF) have been adopted to measure the time-dependent and two-dimensional velocity and temperature fields of a stably thermal-stratified pipe flow. One thousand instantaneous and simultaneous velocity and temperature maps were obtained at overall Richardson numberRi = 0 and 2.5, from which two-dimensional vorticity, Reynolds stress and turbulent heat flux vector were evaluated. The quasi-periodic inclined vortices (which connected to the crest) were revealed from successive instantaneous maps and temporal variation of vorticity and temperature. It has been recognized that these vortices are associated with the crest and valley in the roll-up motion.List of symbols A Fraction of the available light collected - C Concentration of fluorescence - D Pipe diameter - I Fluorescence intensity - L Sampling length along the incident beam - I 0 Intensity of an excitation beam - I c (T) Calibration curve between temperature and fluorescence intensity - I ref Reference intensity of fluorescence radiation - Re b Reynolds number based on bulk velocity,U b D/v - Ri Overall Richardson number based on velocity difference,gDT/U 2 - t Time - t Time interval between the reference and corresponding matrix - T Temperature - T 1,T 2 Temperature of lower and upper layer - T * Normalized temperature, (T–T 1)/T - T c (I) Inverse function of temperature as a function ofI c - T ref Reference temperature - T Temperature difference between upper and lower flow,T 2T 1 - U 1 Velocity of lower stream - U 2 Velocity of upper stream - U b Bulk velocity - U c Streamwise mean velocity atY/D=0 - U Streamwise velocity difference between upper and lower flow,U 1U 2 - u, v, T Fluctuating component ofU, V, T - U, V Velocity component of X, Y direction - X Streamwise distance from the splitter plate - Y Transverse distance from the centerline of the pipe - Z Spanwise distance from the centerline of the pipe - Quantum yield - Absorptivity - vorticity calculated from a circulation - Kinematic viscosity - circulation  相似文献   

11.
The failure of the current theories to predict the coating thickness of non-Newtonian fluids in free coating operations is shown to be a result of the effective slip at the moving rigid surface being coated. This slip phenomenon is a consequence of stress induced diffusion occurring in flow of structured liquids in non-homogeneous flow fields. Literature data have been analysed to substantiate the slip hypothesis proposed in this work. The experimentally observed coating thickness is shown to lie between an upper bound, which is estimated by a no-slip condition for homogeneous solution and a lower bound, which is estimated by using solvent properties. Some design considerations have been provided, which will serve as useful guidelines for estimating coating thickness in industrial practice.fa exponent in eq. (15) - b n/(4 –n)(n + 1) - Ca Capillary number - D diffusivity - De Deborah number - g acceleration due to gravity - G Goucher number - h thickness profile - h 0 final coating thickness - K consistency index - L length available for diffusion - L t tube length - n power-law index - P pressure drop - Q flow rate - R cylinder radius - R t tube radius - t time available for diffusion - T 0 dimensionless thickness without slip - T s dimensionless thickness with slip - U c theoretically calculated withdrawal velocity to match the film thickness - u s slip velocity - U withdrawal velocity - U w theoretically calculated withdrawal velocity based on solvent properties - U * effective withdrawal velocity - x distance in the direction of flow - y distance transverse to the flow direction - curvature coefficient - slip coefficient - curvature coefficient - rate of deformation tensor - u s /U - relaxation time - density - surface tension - shear stress in tube flow - w wall shear stress in tube flow - stress tensor - w wall shear stress - T s /T 0 NCL-Communication No. 2818  相似文献   

12.
A laser Rayleigh correlation probe was constructed, which allows the application of low cost, low power (milliwatt) laser sources. It was tested for basic mixing studies in isothermal binary gas flows. Here, it can be used for the time and space resolved measurement of the concentration mean value and of all important statistical quantities, which give information on the distribution around the concentration mean value (rms, skewness, kurtosis) and on the relation of adjecent fluctuations in time or space (autocorrelation function, power spectral density).List of symbols c concentration (mole fraction) of investigated gas species - c time averagered mean concentration - c instantaneous fluctuating concentration - rms concentration - D Rayleigh intensity difference of two gas species (I R1I R2) - d width of the rectangular channels (x-direction), see Fig. 3 - f frequency - G() Rayleigh autocorrelation function (ACF) - I 0 intensity of irradiated laser light - I Ri intensity of Rayleigh signal of gas species i - K, k calibration constant of Rayleigh probe - l lenght of observed scattering volume - n(t) temporally fluctuating number density of gas molecules - R() normalized ACF - S Rayleigh intensity of gas components 2 in a binary mixture (I R2) - T gas temperature - t time - u exit velocity - skewness of the concentration distribution around the mean value - kurtosis of the concentration distribution around the mean value - (d/d)eff effective scattering cross section of the binary gas mixture - solid angle of collection optics - delay time - sample time  相似文献   

13.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

14.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

15.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

16.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

17.
Some results are presented of experimental studies of the equilibrium temperature and heat transfer of a sphere in a supersonic rarefied air flow.The notations D sphere diameter - u, , T,,l, freestream parameters (u is velocity, density, T the thermodynamic temperature,l the molecular mean free path, the viscosity coefficient, the thermal conductivity) - T0 temperature of the adiabatically stagnated stream - Te mean equilibrium temperature of the sphere - Tw surface temperature of the cold sphere (Twe) - mean heat transfer coefficient - e air thermal conductivity at the temperature Te - P Prandtl number - M Mach number  相似文献   

18.
Summary The problem of flow development from an initially flat velocity profile in the plane Poiseuille and Couette flow geometry is investigated for a viscous fluid. The basic governing momentum and continuity equations are expressed in finite difference form and solved numerically on a high speed digital computer for a mesh network superimposed on the flow field. Results are obtained for the variations of velocity, pressure and resistance coefficient throughout the development region. A characteristic development length is defined and evaluated for both types of flow.Nomenclature h width of channel - L ratio of development length to channel width - p fluid pressure - p 0 pressure at channel mouth - P dimensionless pressure, p/ 2 - P 0 dimensionless pressure at channel mouth - P pressure defect, P 0P - (P)0 pressure defect neglecting inertia - Re Reynolds number, uh/ - u fluid velocity in x-direction - mean u velocity across channel - u 0 wall velocity - U dimensionles u velocity u/ - U c dimensionless centreline velocity - U 0 dimensionless wall velocity - v fluid velocity in y-direction - V dimensionless v velocity, hv/ - x coordinate along channel - X dimensionless x-coordinate, x/h 2 - y coordinate across channel - Y dimensionless y-coordinate, y/h - resistance coefficient, - 0 resistance coefficient neglecting inertia - fluid density - fluid viscosity  相似文献   

19.
The work describes a way to obtain loss modulus and storage modulus master curves from oscillatory measurements of silicone oils.The loss modulus master curve represents the dependence of the viscous flow behavior on · 0 * and the storage modulus master curve — the dependence of the elastic flow behavior on · 0 * .The relation between the values of the loss modulus and storage modulus master curves (at a certain frequency) is a measurement of the viscoelastic behavior of a system. The G/G-ratio depends on · 0 * which leads to a viscoelastic master curve. The viscoelastic master curve represents the relation between the elastic and viscous oscillatory flow behavior.  相似文献   

20.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号