首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3–5 μm C18 and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate–ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2–2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns.  相似文献   

2.
In the present study, three different methods for packing of 3 microm PBD-ZrO2 particles in 0.5 mm i.d. glass-lined stainless steel columns have been examined. The two first methods were based on a traditional downstream high-pressure technique using tetrachloromethane (Method I) or aqueous Triton X-100 (Method II) as slurry solvents, while Method III was an upstream high-pressure flocculating method with stirring, using isopropanol both as the slurry and packing solvent. Method I was found to be superior in terms of efficiency, producing 0.5 mm i.d. x 10 cm columns with almost 90,000 plates m(-1) for toluene (R.S.D. = 8.7%, n = 3), using a slurry concentration of 600 mg ml(-1), ACN-water (50:50 (v/v)) as the packing solvent and a packing pressure of 650 bars. For Method I, the slurry concentration, column i.d., column length and initial packing pressure were found to have a significant effect on column efficiency. Finally, the long-term temperature stability of the prepared columns was investigated. In isothermal mode, using ACN-20 mM phosphate buffer, pH 7 (50:50 (v/v)) as the mobile phase, the columns were found to be stable for at least 3,000 void volumes at 100 degrees C. At this temperature, the solute efficiencies changed about 5-18% and the retention factors changed about 6-8%. In temperature programming mode (not exceeding 100 degrees C), on the other hand, a rapid decrease in both column efficiency and retention factors was observed. However, when the columns were packed as initially described, ramped up and down from 50 to 100 degrees C for 48 h and refilled, fairly stable columns with acceptable efficiencies were obtained. Although not fully regaining their initial efficiency after refilling, the solute efficiencies changed about 19-28% (32-37%) and the retention factors changed about 4-5% (13-17%) after running 3,000 (25,000) void volumes or 500 (3,900) temperature programs.  相似文献   

3.
Preparation of organic polymer monolithic columns in fused silica capillaries was aimed at fast gradient separation of proteins. For this purpose, polymerization in situ procedure was optimized, using ethylene dimetacrylate and butyl metacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in presence of non-aqueous porogen solvent mixtures composed of 1-propanol and 1,4-butanediol. The separation of proteins in totally monolithic capillary columns was compared with the chromatography on a new type of "hybrid interparticle monolithic" capillary columns, prepared by in situ polymerization in capillary packed with superficially porous spherical beds, 37-50 microm. The "hybrid" columns showed excellent stability and improved hydrodynamic flow properties with respect to the "totally" monolithic capillary columns. The separation selectivity is similar in the two types of columns. The nature of the superficially porous layer (bare silica or bonded C18 ligands) affects the separation selectivity less significantly than the porosity (density) of the monolithic moiety in the interparticle space, controlled by the composition of the polymerization mixture. The retention behaviour of proteins on all prepared columns is consistent with the reversed-phase gradient elution theory.  相似文献   

4.
Butyl methacrylate monolithic columns in 320 microm i.d. fused silica capillaries for reversed-phase capillary liquid chromatography were prepared by radical polymerization initiated thermally with azobisisobutyronitrile (AIBN). Polymerization mixture contained butyl methacrylate (BMA) as the function monomer and ethylene dimethacrylate (EDMA) as the crosslinking agent with 1,4-butanediol and 1-propanol as a binary porogen solvent. Ratio of 1,4-butanediol to 1-propanol in the porogen solvent was optimized regarding the monolithic column efficiency and performance. Total porosity, column permeability, separation impedance, Walters hydrophobicity index, retention factors, peak asymmetry factors, height equivalents to a theoretical plate and peak resolutions were used for characterization of the prepared monolithic columns. The polymerization mixture consisting of 17.8% of BMA, 21.8% of EDMA, 18.0% of 1,4-butanediol, 42.0% of 1-propanol and 0.4% AIBN generated monolithic columns of the best performance having a sufficient permeability and the lowest separation impedance. It was also demonstrated that monolithic columns of this composition exhibited good preparation reproducibility and an excellent pressure resistance when applied in capillary liquid chromatography.  相似文献   

5.
Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.  相似文献   

6.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

7.
In the last decade, silica monolithic capillaries have focused more and more attention on miniaturized separation techniques like capillary electrochromatography (CEC), nano-liquid chromatography (nano-LC) and chip electrochromatography owing to their unique chromatographic properties and their simplified preparation compared with packed columns. They are synthesized according to a sol-gel multi-step process that includes, after a gelation step at 40 degrees C leading to the formation of the macropores network and the silica skeleton, a post-gelation step (hydrothermal treatment at 120 degrees C in basic medium) that allows to tailor the mesopores and finally a calcination or a washing step to remove remaining polymers. In order to reduce the synthesis time, the number of synthesis steps and above all the temperature synthesis, to adapt the synthesis of such silica monoliths in polymeric microsystem devices, we extensively studied the influence of the hydrothermal treatment and its duration on textural (pore size distribution) and chromatographic properties (retention, efficiency) of in situ-synthesized capillary monoliths in nano-LC and CEC. This study was performed on pure silica and octyl chains grafted silica monoliths. Untreated monoliths show small pores (<6 nm), whereas hydrothermally treated monoliths exhibit medium and large mesopores (8-17 nm). It was demonstrated that the hydrothermal treatment at 120 degrees C was not necessary for pure silica monolithic capillaries dedicated to normal phase liquid chromatography or hydrophilic interaction liquid chromatography (HILIC) and electrochromatography: the suppression of the hydrothermal treatment did not impair efficiencies in CEC and in nano-LC but contributed to increase in retention factors. Minimal plate heights of ca. 5 microm in CEC and 6 microm in nano-LC were obtained with or without hydrothermal treatment with bare silica. In the same way, the hydrothermal treatment was not necessary for grafted silica monoliths only dedicated to CEC. However, the results clearly indicate that the hydrothermal treatment becomes essential before grafting in order to preserve the efficiency of the monolithic silica capillaries dedicated to nano-LC: in this particular case, the suppression of the hydrothermal treatment leads approximately to a loss of a factor two in efficiency.  相似文献   

8.
Polymer monolithic columns with I.D. between 100 and 320 microm were prepared by in-situ polymerization of styrene and divinylbenzene in fused silica capillaries. The effects of monolithic column I.D. on the separation of proteins in reversed-phase capillary-liquid chromatography under gradient elution were systemically studied. The loading capacity was positively proportional to the volume of the stationary phase. It was found that the smaller diameter columns showed better performance for protein separation. The minimum plate height decreases from 34.99 microm (320 microm I.D. column) to 5.39 microm (100 microm I.D. column) for a retained protein. After studying the three parameters of the Van Deemter equation, it was interpreted that the smaller diameter can provide less flow resistance and the better performance may also be improved by the increasing of the effective diffusion. This conclusion was also supported by the data of separation permeability and breakthrough curves.  相似文献   

9.
Low flow-resistant alkyl methacrylate-based monolithic stationary phases of different hydrophobicity were constructed for reversed-phase capillary liquid chromatography by thermally initiated radical polymerization of respective methacrylate ester monomer with different alkyl chain (C2, C4, C6, C12, C18) and ethylene glycol dimethacrylate (EDMA) in a 250 microm i.d. fused silica capillary. The hydrophobicity was basically controlled by changing the length and/or the density of the alkyl-chain, while the composition and the ratio of porogenic solvent were adjusted to obtain highly permeable rigid monoliths with adequate column efficiency. Among the prepared monolithic stationary phases, C18-methacrylate monoliths polymerized from a binary porogenic solvent of isoamyl alcohol and 1,4-buthandiol exhibited the most promising performance in terms of hydraulic resistance and column efficiency. The pressure drops of 20-cm long monolithic columns were below approximately 0.4 MPa at a normal linear velocity of 1mm/s (a flow rate of 3 microL/min), and the numbers of theoretical plates for alkylbenzenes mostly exceeded 3000 plates/20 cm. The produced monolithic columns had good mechanical strength for high pressure and temperature, and could be properly operated even at a temperature of 80 degrees C and at a pressure of at least 33 MPa. At 80 degrees C, the theoretical plate numbers reached 6000 plates/20 cm because of the enhanced mass transfer. Due to the novel hydraulic resistance and mechanical strength, the separation time could be reduced 120-fold simply by raising the flow rate and column temperature.  相似文献   

10.
Reduction of through-pore size and skeleton size of a monolithic silica column was attempted to provide high separation efficiency in a short time. Monolithic silica columns were prepared to have various sizes of skeletons (approximately 1-2 microm) and through-pores (approximately 2-8 microm) in a fused-silica capillary (50-200 microm I.D.). The columns were evaluated in HPLC after derivatization to C18 phase. It was possible to prepare monolithic silica structures in capillaries of up to 200 microm I.D. from a mixture of tetramethoxysilane and methyltrimethoxysilane. As expected, a monolithic silica column with smaller domain size showed higher column efficiency and higher pressure drop. High external porosity (> 80%) and large through-pores resulted in high permeability (K = 8 x 10(-14) -1.3 x 10(-12) m2) that was 2-30 times higher than that of a column packed with 5-mirom silica particles. The monolithic silica columns prepared in capillaries produced a plate height of about 8-12 microm with an 80% aqueous acetonitrile mobile phase at a linear velocity of 1 mm/s. Separation impedance, E, was found to be as low as 100 under optimum conditions, a value about an order of magnitude lower than reported for conventional columns packed with 5-microm particles. Although a column with smaller domain size generally resulted in higher separation impedance and the lower total performance, the monolithic silica columns showed performance beyond the limit of conventional particle-packed columns under pressure-driven conditions.  相似文献   

11.
Monolithic capillary columns were prepared by thermally initiated free radical polymerisation of phenyl acrylate (PA) and 1,4-phenylene diacrylate (PDA) in the confines of 200 microm I.D. fused silica capillaries. Polymerisation was performed in the presence of 2-propanol and tetrahydrofuran (THF) as inert diluents (porogens), using alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Morphology and porosity of the resulting monoliths were comprehensively studied by scanning electron microscopy (SEM), mercury intrusion porosimetry and inverse size-exclusion chromatography (ISEC). The novel poly(phenyl acrylate-co-1,4-phenylene diacrylate) (PA/PDA) monoliths showed high mechanical stability and were successfully applied to the separation of proteins and oligodeoxynucleotides, employing reversed-phase (RP) and ion-pair reversed-phase (IP-RP) conditions, respectively. Maximum loading capacities for cytochrome c and d(pT)(16) were evaluated and found to be in the region of 200 fmol. Batch-to-batch reproducibility was determined for three independently prepared PA/PDA monolithic capillary columns. Relative standard deviations (RSDs) of retention time (t(R)) of 0.7-1.6% for proteins and 0.2-2.5% for d(pT)(12-18) proved high reproducibility of the PA/PDA supports.  相似文献   

12.
Macroporous poly(styrene-divinylbenzene) monolithic columns were prepared in fused silica capillaries of 100 microm id by in-situ copolymerization of styrene with divinylbenzene in the presence of propan-1-ol and formamide as the porogen system. The monoliths were subsequently alkylated with linear alkyl C-18 groups via Friedel-Crafts reaction to improve the retention and chromatographic resolution of strongly polar phenolic acids. A new thermally initiated grafting procedure was developed in order to shorten the time of the alkylation process. The grafting procedure was optimized with respect to the reaction temperature, time, the grafting reactant concentration, and the solvent used. The type of solvent and the grafting temperature are the most significant factors affecting the hydrodynamic properties, porosity, and efficiency of the columns. While the equivalent particle diameter of the grafted column increased, the capillary-like flow-through pore diameter decreased in comparison to non-alkylated monoliths. The hydrodynamic permeability of the monolith decreased, but the monolithic column still permitted fast micro-HPLC separations.  相似文献   

13.
Because of the problems caused by the irreversible binding of insulins and proinsulins to several silica-based reversed-phase columns, the use of polymeric reversed-phase columns was investigated for the analysis of rat islet polypeptides involved in insulin biosynthesis. No irreversible binding of insulins and proinsulins was observed for the polymeric reversed-phase columns, probably due to the absence of silanol groups. The six polypeptides involved in insulin biosynthesis in rat islets were equally well resolved in shallow trifluoroacetic acid-acetonitrile gradients on the silica-based Nucleosil 300-5C4 column (45 degrees C), the polymer-based Asahipak C4P-50 (25 and 45 degrees C), and ODP-50 columns (45 degrees C). In shallow triethylammonium phosphate-acetonitrile gradients (25 degrees C) satisfactory resolution of the two rat proinsulins was only obtained on the polymer-based Asahipak C4P-50 and C8P-50 columns. Increasing the separation temperature to 45 degrees C improved the separation of the two insulins and the two proinsulins in all cases. The shifts in retention times for the individual islet polypeptides observed in relation to the increased separation temperature were found to be different for the silica C4 and the polymer C4 columns. Recoveries of rat islet polypeptides were comparably high from the silica- and the polymer-based C4 columns and linear load-response curves were obtained in the microgram to picogram mass range on both columns.  相似文献   

14.
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.  相似文献   

15.
The performance of isocratic separations of 11 pollutant phenols (PP) using monolithic (Chromolith RP-18e) and conventional reversed-phase 5 microm (Luna and Purospher C18) and 4 microm (Synergi C12) particulate size columns, selected from high purity silica materials, has been compared. The separations have been optimized based on a previously optimized separation in which a reversed-phase C18 Luna column and acetonitrile as organic modifier were used, allowing the separation of all phenols tested in 23 min. The optimization process was carried out for each column by studying the effect of the mobile phase (acetonitrile as organic modifier, pH, flow-rate) on phenols separation. Under the optimized separation conditions, all phenols were separated in less than 23 min for all columns tested. Asymmetry factors were further evaluated and used to estimate column efficiency using the Dorsey-Foley equation. The efficiency and asymmetry factors were lower for Chromolith than for Purospher and Luna columns respectively. The Chromolith column was finally selected, due to its lower flow resistance, analysis time and good efficiency and asymmetry factors. The PPs separation was achieved in 3 min. The asymmetry factors were in the range 0.9-1.5 using 50mM acetate buffer (pH = 5.25)-ACN (64:36, v/v) as mobile phase, T=45 degrees C and 4.0 ml min(-1) flow-rate.  相似文献   

16.
Systems formed by serial connection of capillary columns of different polarity were studied with methods previously used to predict the behavior of linked capillary columns under isothermal conditions and to obtain programmed temperature gas chromatography (PTGC) retention times of the individual columns starting from isothermal data. The two calculation methods were simultaneously applied in order to predict PTGC retention times of the series system starting from isothermal data obtained on the two individual columns. Experimental retention values measured using different temperature programs on the individual columns and on the series systems were found to agree with those calculated.  相似文献   

17.
Methacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared. A satisfactory column-to-column and run-to-run repeatability was obtained for the electro-osmotic mobility, the retention characteristics (k-values) and the efficiency on the columns prepared and tested in the CEC mode. A relatively high electro-osmotic flow was observed in the direction of the positive electrode. The electro-osmotic mobility was found to be influenced only marginally by mobile-phase parameters such as the pH, ionic strength, and acetonitrile content. The retention behavior of the monolithic columns was similar to that of columns packed with C18-modified silica particles. Columns could be prepared with optimum plate heights ranging from 6 microm for unretained compounds to 20 microm for well retained (k=2.5) polyaromatic hydrocarbons. However, for specific analytes a - still unexplained - lower chromatographic column efficiency was observed.  相似文献   

18.
This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.  相似文献   

19.
An on-line preconcentration method using a polymeric monolithic support is proposed for the retention of the decapeptide angiotensin I and its subsequent analysis by CZE. Monolithic capillary columns were prepared in fused-silica (FS) capillaries of 150 microm id by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iron protoporphyrin IX (Fe-ProP). Monolithic microcolumns (8 mm long) were coupled on-line to the inlet of the separation capillary (FS capillary, 75 microm id x10 cm from the inlet to the microcolumn and 27 cm from the microcolumn to the detector). Angiotensin I was released from the sorbent by a 50 mM sodium phosphate, pH 2.5/ACN, 75:25 v/v solution and then analyzed by CZE with UV absorption detection at 214 nm. The concentration LOQ (CLOQ) was 0.5 ng/mL. The Fe-ProP-derivatized monolithic microcolumn coupled to the separation capillary exhibited a high retention capacity for peptide angiotensin I, and showed as much as 10,000-fold improvement in concentration sensitivity.  相似文献   

20.
The preparation of monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns using photoinitiated in situ polymerization within 200 microm i.d. capillaries and their application for microHPLC separations of proteins have been studied. The low resistance to flow characteristic of monolithic columns, enabled the use of very high flow rates of up to 100 microL/min representing a flow velocity of 87 mm/s. Very good separations of a model protein mixture consisting of ribonuclease A, cytochrome c, myoglobin, and ovalbumin was achieved in less than 40 s using a very simple single step gradient of the mobile phase. Interestingly, no effect of the pore size on the separations of proteins was observed for these monolithic columns within the size range of 0.66-2.2 microm. The monolithic microHPLC columns are found very robust and no changes in the long term separation performance and back pressure were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号