首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine derivatives with a nucleophilic group at the 5' position (G-5') are oxidized by the Pt (IV) complex Pt( d, l)(1,2-(NH 2) 2C 6H 10)Cl 4 ([Pt (IV)(dach)Cl 4]). The overall redox reaction is autocatalytic, consisting of the Pt (II)-catalyzed Pt (IV) substitution and two-electron transfer between Pt (IV) and the bound G-5'. In this paper, we extend the study to improve understanding of the redox reaction, particularly the substitution step. The [Pt (II)(NH 3) 2(CBDCA-O,O')] (CBDCA = cyclobutane-1,1-dicarboxylate) complex effectively accelerates the reactions of [Pt (IV)(dach)Cl 4] with 5'-dGMP and with cGMP, indicating that the Pt (II) complex does not need to be a Pt (IV) analogue to accelerate the substitution. Liquid chromatography/mass spectroscopy (LC/MS) analysis showed that the [Pt (IV)(dach)Cl 4]/[Pt (II)(NH 3) 2(CBDCA-O,O')]/cGMP reaction mixture contained two Pt (IV)cGMP adducts, [Pt (IV)(NH 3) 2(cGMP)(Cl)(CBDCA-O,O')] and [Pt (IV)(dach)(cGMP)Cl 3]. The LC/MS studies also indicated that the trans, cis-[Pt (IV)(dach)( (37)Cl) 2( (35)Cl) 2]/[Pt (II)(en)( (35)Cl) 2]/9-EtG mixture contained two Pt (IV)-9-EtG adducts, [Pt (IV)(en)(9-EtG)( (37)Cl)( (35)Cl) 2] and [Pt (IV)(dach)(9-EtG)( (37)Cl)( (35)Cl) 2]. These Pt (IV)G products are predicted by the Basolo-Pearson (BP) Pt (II)-catalyzed Pt (IV)-substitution scheme. The substitution can be envisioned as an oxidative addition reaction of the planar Pt (II) complex where the entering ligand G and the chloro ligand from the axial position of the Pt (IV) complex are added to Pt (II) in the axial positions. From the point of view of reactant Pt (IV), an axial chloro ligand is thought to be substituted by the entering ligand G. The Pt (IV) complexes without halo axial ligands such as trans, cis-[Pt(en)(OH) 2Cl 2], trans, cis-[Pt(en)(OCOCF 3) 2Cl 2], and cis, trans, cis-[Pt(NH 3)(C 6H 11NH 2)(OCOCH 3) 2Cl 2] ([Pt (IV)(a,cha)(OCOCH 3) 2Cl 2], satraplatin) did not react with 5'-dGMP. The bromo complex, [Pt (IV)(en)Br 4], showed a significantly faster substitution rate than the chloro complexes, [Pt (IV)(en)Cl 4] and [Pt (IV)(dach)Cl 4]. The results indicate that the axial halo ligands are essential for substitution and the Pt (IV) complexes with larger axial halo ligands have faster rates. When the Pt (IV) complexes with different carrier ligands were compared, the substitution rates increased in the order [Pt (IV)(dach)Cl 4] < [Pt (IV)(en)Cl 4] < [Pt (IV)(NH 3) 2Cl 4], which is in reverse order to the carrier ligand size. These axial and carrier ligand effects on the substitution rates are consistent with the BP mechanism. Larger axial halo ligands can form a better bridging ligand, which facilitates the electron-transfer process from the Pt (II) to Pt (IV) center. Smaller carrier ligands exert less steric hindrance for the bridge formation.  相似文献   

2.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

3.
Platinum in the form of hexachloroplatinate(IV) reacts slowly with EDTA in a 1:1 mole ratio. At the concentration level used (a few mg per 50–75 ml), favorable conditions were solution of pH 3–4.5, and 3–8-fold molar excess of EDTA. Complete reaction required heating at 100° for 1.5–2 h. The reaction rate was retarded by acetate ion, but not by nitrate or sulfate. Titrimetric determination of platinum was accomplished by addition of excess standard EDTA, buffering to pH 3–4.5, heating the mixture at 100° for 1.5 h, buffering to pH 5.3 with acetic acid-acetate, and back-titrating with zinc acetate to a xylenol orange end-point. Blank corrections were necessary to compensate for trace metal impurities in the water and/or reagents. Determinations of 0.4–3 mg of platinum per 50 ml were accurate to ± 1.3% standard deviation. Both titrimetric and spectrophotometric evidence ruled out the possibility of reduction of platinum(IV) by EDTA. Titrimetric methods showed the complex to be PtCl4HY3-, where Y is the deprotonated EDTA.  相似文献   

4.
The oxidation of the Pt(IV) tetramethyl complex [ArNCHCHNAr]PtMe4 (Ar = 2,6-Me2C6H3) has been investigated in acetonitrile and dichloromethane. Cyclic voltammetry demonstrates that the irreversible oxidation of [ArNCHCHNAr]PtMe4 occurs at a slightly less positive oxidation potential than the irreversible oxidation of the analogous Pt(II) species [ArNCHCHNAr]PtMe2. The product distribution arising from the oxidation depends strongly on the reaction conditions and includes cationic Pt(IV) species (acetonitrile, dichloromethane solvents) and Pt(II) species (dichloromethane only). Evidence is presented that suggests that homolytic cleavage of a weakened PtC bond in is involved in the oxidatively induced reactions.  相似文献   

5.
Interaction of cyanobacteria (Plectonema boryanum UTEX 485) with aqueous platinum(IV)-chloride (PtCl(4) degrees ) has been investigated at 25-100 degrees C for up to 28 days, and 180 degrees C for 1 day. The addition of PtCl(4) degrees to the cyanobacteria culture initially promoted the precipitation of Pt(II)-organic material as amorphous spherical nanoparticles (< or =0.3 microm) in solutions and dispersed nanoparticles within bacterial cells. The spherical Pt(II)-organic nanoparticles were connected into long beadlike chains by a continuous coating of organic material derived from the cyanobacterial cells, and aged to nanoparticles of crystalline platinum metal with increase in temperature and reaction time. The stepwise reduction for the formation of platinum nanoparticles in the presence of cyanobacteria was deduced to be Pt(IV) [PtCl(4) degrees ] --> Pt(II) [Pt(II)-organics] --> Pt(0). Spherical platinum-bearing nanoparticles were not present in abiotic PtCl(4) degrees experiments conducted under similar conditions and duration.  相似文献   

6.
Many transition metal complexes mediate DNA oxidation in the presence of oxidizing radiation, photosensitizers, or oxidants. The final DNA oxidation products vary depending on the nature of metal complexes and the structure of DNA. Here we propose a mechanism of oxidation of a nucleotide, deoxyguanosine 5'-monophosphate (dGMP) by trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum (trans-Pt(d,l)(1,2-(NH(2))(2)C(6)H(10))Cl(4), [Pt(IV)Cl(4)(dach)]; dach = diaminocyclohexane) to produce 7,8-dihydro-8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-dGMP) stoichiometrically. The reaction was studied by high-performance liquid chromatography (HPLC), (1)H and (31)P nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). The proposed mechanism involves Pt(IV) binding to N7 of dGMP followed by cyclization via nucleophilic attack of a phosphate oxygen at C8 of dGMP. The next step is an inner-sphere, two-electron transfer to produce a cyclic phosphodiester intermediate, 8-hydroxyguanosine cyclic 5',8-(hydrogen phosphate). This intermediate slowly converts to 8-oxo-dGMP by reacting with solvent H(2)O.  相似文献   

7.
The kinetics of redox reactions of the PtIV complexes trans-Pt(d,l)(1,2-(NH2)2C6H10)Cl4 ([PtIVCl4(dach)]) and Pt(NH2CH2CH2NH2)Cl4 ([PtIVCl4(en)]) with 5'- and 3'-dGMP (G) have been studied. These redox reactions involve substitution followed by an inner-sphere electron transfer. The substitution is catalyzed by PtII and follows the classic Basolo-Pearson PtII-catalyzed PtIV-substitution mechanism. We found that the substitutution rates depend on the steric hindrance of PtII, G, and PtIV with the least sterically hindered PtII complex catalyzing at the highest rate. 3'-dGMP undergoes substitution faster than 5'-dGMP, and [PtIVCl4(en)] substitutes faster than [PtIVCl4(dach)]. The enthalpies of activation of the substitution, DeltaH double dagger s, of 3'-dGMP is only 70% greater than that of 5'-dGMP (50.4 vs 30.7 kJ mol(-1)), but the entropy of activation of the substitution, DeltaS double dagger s, of 3'-dGMP is much greater than that of 5'-dGMP (-59.4 vs -129.5 J K(-1) mol(-1)), indicating that steric hindrance plays a major role in the substitution. The enthalpy of activation of electron transfer, DeltaH double dagger e, of 3'-dGMP is smaller than that of 5'-dGMP (88.8 vs 137.8 kJ mol(-1)). The entropy of activation of electron transfer, DeltaS double dagger e, of 3'-dGMP is negative, but that of 5'-dGMP is positive (-27.8 vs +128.8 J K-1 mol-1). The results indicate that 5'-hydroxo has less rotational barrier than 5'-phosphate, but it is geometrically unfavorable for internal electron transfer. The electron-transfer rate also depends on the reduction potential of PtIV. Because of its higher reduction potential, [PtIVCl4(dach)] has a faster electron transfer than [PtIVCl4(en)].  相似文献   

8.
UVA-induced photodecomposition of a Pt(IV)-diazido complex involves not only reduction to Pt(II) and N(2) release, but also O(2) evolution and formation of nitrene intermediates, whose trapping with (CH(3))(2)S gives rise to an unusual N,N'-bis(ethyl)sulfurousdiamide ligand in an apparently unprecedented process involving C-C bond formation.  相似文献   

9.
Reactions of [Me2Pt(μ-dmpm)2PtMe2], (dmpm = Me2PCH2PMe2) with halogens, (X2) or methyl iodide give the platinum(IV)-platinum(II) complexes [Me3Pt(μ-X)(μ-dmpm)2PtMe]X or [Me3IPt(μ-dmpm)2PtMe2] respectively, and the former reactions involve methyl group transfer between the platinum atoms of the binuclear complex; one of the derivatives ([Me3Pt(μ-I)(μ-dmpm)2PtL]I3, L = 1/2I + 1/2 Me) is characterized by an X-ray crystal structure determination.  相似文献   

10.
Synthesis and isolation of the monomeric octahedral platinum(IV) amido complex (NCN)PtMe2NHPh have been accomplished upon deprotonation of the amine complex [(NCN)PtMe2(NH2Ph)][OTf]. The preliminary reactivity of the amido ligand has been explored.  相似文献   

11.
12.
Complex electron transfer reactions have been characterized whereby in addition to electron transfer, subsequent electrochemical, chemical and even in some cases biological consequences occur. These include a secondary electron transfer that leads to a major rearrangement of the electronic structure, such that an initial oxidation leads to a reduction (or an initial reduction leads to an oxidation) for these valence ambiguous compounds. Mixed valency and valence-tautomeric behaviors can additionally result from these complex electron-transfer-induced reactions.  相似文献   

13.
Oxidation of tin(IV) o-amidophenolate complexes [Sn(ap)Ph(2)] (1) and [Sn(ap)Et(2)(thf)] (2) (ap=dianion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (ImQ)) with molecular oxygen and sulfur in toluene solutions was investigated. The reaction of oxygen with 1 at room temperature forms a paramagnetic derivative [Sn(isq)(2)Ph(2)] (3) (isq=radical anion of ImQ) and diphenyltin(IV) oxide [{Ph(2)SnO}(n)]. Interaction of 1 with sulfur gives another monophenyl-substituted paramagnetic tin(IV) complex, [Sn(ap)(isq)Ph] (4), and the sulfide, [Ph(3)Sn](2)S. The oxidation of 2 with oxygen and with sulfur proceeds through the derivative [Sn(isq)(2)Et(2)] (7), which undergoes alkyl elimination to give two new tin(IV) compounds, [Sn(ap)(isq)Et] (5) and [Sn(ap)(EtImQ)Et] (6) (EtImQ=2,4-di-tert-butyl-6-(2,6-diisopropylphenylimino)-3-ethylcyclohexa-1,4-dienolate ligand), respectively, along with the corresponding alkyltin(IV) oxide and sulfide. Complexes 3-5 and 7 were studied by EPR spectroscopy. The structures of 3, 4 and 6 were investigated by X-ray analysis.  相似文献   

14.
We have studied the formation of a platinum complex and developed a simple, rapid and sensitive spectrophotometric method for the determination of platinum in solution. The method is based on the complexation reaction of the chromogen, prochlorperazine bismethane-sulfonate (PCPMS), with platinum(IV) in phosphoric acid medium which forms a reddish brown 1 1 complex with an absorption maximum around 528 nm. The reaction is fast in the presence of copper(II) and goes to completion within 1 min. Beer's law is obeyed over the concentration range 0.3–7.2 g/ml of platinum(IV) with an optimal range of 1.2–6.6 g/ml. The molar absorptivity is 2.65 × 1041 mol–1 cm–1 and the Sandell's sensitivity is 7.8 ng cm–2. The stability constant, logK, of the complex is 4.96±0.1 at 25 ° C. The effects of time, temperature, concentrations of acids, PCPMS and copper(II), and the interference by various ions are investigated. The method has been successfully applied to the determination of platinum content in alloys and minerals.  相似文献   

15.
A new radical cyclization reaction of unsaturated amino acid derivatives is presented. The reaction is induced by photoelectron transfer (PET) catalysis and proceeds, in comparison to commonly applied methods, under mild, nonoxidizing, and nontoxic conditions in neutral medium. This type of radical cyclization reaction can be used in peptide chemistry for inducing structural changes in peptides.  相似文献   

16.
17.
The use of ligands with proximate hydrogen bonding substituents in the oxidation of platinum(II) dimethyl complexes with H2O2 leads to the exclusive formation of an unusual cis-dihydroxo platinum(IV) complex, which can dehydrate to form a trinuclear metalla-azacrown complex.  相似文献   

18.
Both platinum(II) and the total amount of platinum were determined in the 5-μmole range with a precision of 0.3%. First, platinum(II) was determined dy oxidation with electrogenerated bromine,the equivalent quantity of electricity being measured. After reduction to platinum(II) with electrogenarated tin(II), the total amount of platinum was determined by a second oxidation with electrogenerated bromine.The reduction with tin(II) was too slow for manual control, and an electronic coulometric titrator was used.The construction of the tritator is described. The underlying coulometric principle, called controlled-reagent coulometry, and its adventages are discussed. A number of other substances were also tested.  相似文献   

19.
The five-coordinate platinum(IV) complex (nacnac)PtMe3 (nacnac- = [{(o-iPr2C6H3)NC(CH3)}2CH]-) thermally eliminates ethane and methane to produce a novel olefin(hydrido)platinum(II) complex, where the olefin is part of the nacnac-type ligand. This Pt(II) product activates hydrocarbons, including alkanes under mild conditions, as indicated by scrambling of hydrogen and deuterium between the hydrocarbon solvent and selected positions on the ligand of the platinum complex. A mechanism in which olefin insertion into the metal hydride bond opens a site to allow hydrocarbon coordination and C-H bond oxidative addition is proposed.  相似文献   

20.
A simple, rapid and sensitive spectrophotometric procedure for the determination of platinum has been elaborated. Pt traces were determined in the form of the PtCl(6)(2-) complex in hydrochloric acid solution whose concentration varies from 0.01 to 2 mol L(-1) by measuring the absorbance at 260 nm. The detection limit is 4.7 x 10(-7) mol L(-1), the linearity range from 2 x 10(-6) mol L(-1) to 7 x 10(-6) mol L(-1), and the correlation coefficient is r=0.9990. No significant interferences were observed from a majority of the investigated ions, such as Zn(II), Pb(II), Mn(II), Cd(II), Co(II) and Ni(II) with the exception of Cu(II), Sb(III), Fe(III), Pd(II), Sn(II) and I(-) ions. The method was successfully applied for the determination of Pt traces in different solid samples and the recovery from inorganic materials was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号