首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.  相似文献   

2.
用壳聚糖对多壁碳纳米管进行修饰,构建了一种用于固定血红蛋白的新型复合材料,并研究了血红蛋白在该碳纳米管上的电化学性质及其对过氧化氢的电催化活性.扫描电镜结果表明,壳聚糖修饰的多壁碳纳米管呈单一的纳米管状,并能均匀分散在玻碳电极表面.紫外光谱分析表明血红蛋白在该复合膜内能很好地保持其原有的二级结构.将该材料固定在玻碳电极上后,血红蛋白能成功地实现其直接电化学.根据峰电位差随着扫描的变化,计算得到血红蛋白在壳聚糖修饰的碳纳米管膜上的电荷转移系数为0.57,表观电子转移速率常数为7.02 s-1.同时,该电极对过氧化氢显示出良好的催化性能,电流响应信号与H2O2浓度在1.0×10-6 ~1.5×10-3 mol/L间呈线性关系,检出限为5.0×10-7 mol/L.修饰电极显示了良好的稳定性.  相似文献   

3.
Direct electrochemistry of hemoglobin (Hb) on natural nano-structural attapulgite clay film-modified glassy carbon (GC) electrode was investigated. The interaction between Hb and attapulgite was examined using UV-vis, FTIR spectroscopy, and electrochemical methods. The immobilized Hb displayed a couple of well-defined and quasi-reversible redox peaks with the formal potential (E(0')) of about -0.366 V (versus SCE) in 0.1 M phosphate buffer solution of pH 7.0. The current was linearly dependent on the scan rate, indicating that the direct electrochemistry of Hb in that case was a surface-controlled electrode process. The formal potential changed linearly from pH 5.0 to 9.0 with a slope value of -48.2 mV/pH, which suggested that a proton transfer was accompanied with each electron transfer in the electrochemical reaction. The immobilized Hb exhibited excellent electrocatalytic activity for the reduction of hydrogen peroxide without the aid of an electron mediator. The electrocatalytic response showed a linear dependence on the H(2)O(2) concentration ranging from 5.4 x 10(-6) to 4.0 x 10(-4) M with the detection of 2.4 x 10(-6) M at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant K(M)(app) for the H(2)O(2) sensor was estimated to be 490 microM, showing a high affinity.  相似文献   

4.
In this study, stable and homogenous thin films of multiwalled carbon nanotubes (MWCNTs) were obtained on conducting surface using ciprofloxacin (CF, fluoroquinolone antibiotic) as an effective-dispersing agent. Further, MWCNTs/CF film modified electrodes (glassy carbon and indium tin oxide-coated glass electrode) are used successfully to study the direct electrochemistry of proteins. Here, cytochrome C (Cyt-C) was used as a model protein for investigation. A MWCNTs/CF film modified electrode was used as a biocompatible material for immobilization of Cyt-C from a neutral buffer solution (pH 7.2) using cyclic voltammetry (CV). Interestingly, Cyt-C retained its native state on the MWCNTs/CF film. The Cyt-C adsorbed MWCNTs/CF film was characterized by scanning electron microscopy (SEM), UV–visible spectrophotometry (UV-vis) and CV. SEM images showed the evidence for the adsorption of Cyt-C on the MWCNTs/CF film, and UV–vis spectrum confirmed that Cyt-C was in its native state on MWCNTs/CF film. Using CV, it was found that the electrochemical signal of Cyt-C was highly stable in the neutral buffer solution and its redox peak potential was pH dependent. The formal potential (−0.27 V) and electron transfer rate constant (13 ± 1 s−1) were calculated for Cyt-C on MWCNTs/CF film modified electrode. A potential application of the Cyt-C/MWCNTs/CF electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2 × 10−6 to 7.8 × 10−5 M. The detection limit for determination of H2O2 has been found to be 1.0 × 10−6 M (S/N = 3). Thus, Cyt-C/MWCNTs/CF film modified electrode can be used as a biosensing material for sensor applications.  相似文献   

5.
Stable films of biopolymer chitosan and carbon nanotubes were prepared by a layer-by-layer self-assembly technique. Atomic force microscopy, scanning electron microscopy, cyclic voltammetry, and UV-vis spectroscopy were used to characterize the film assembly. Atomic force microscopy and scanning electron microscopy showed that an even, stable film was formed. The UV-vis spectroscopy and cyclic voltammetry study indicated the uniform growth of the film. The property of the self-assembled multilayer film in promoting protein electron transfer was demonstrated by incorporating microperoxidase-11 in the film. Microperoxidase-11 in the multilayer film could transfer electrons with the electrode indicating that carbon nanotubes could wire the protein to the electrode. The electrocatalytic activity of the microperoxidase-11 containing multilayer film-modified electrode toward H(2)O(2) and O(2) was investigated. The results showed that along with the increase in the assembled layers the electrocatalytic reduction potentials of H(2)O(2) and O(2) shifted positively. The prepared multilayer film of chitosan and carbon nanotubes containing protein was a sensitive interface for electrocatalytic study.  相似文献   

6.
A multi-walled carbon nanotube (MWCNT) film-modified glassy carbon electrode (GCE) was constructed for the determination of an antihistamine drug, cetirizine dihydrochloride (CTZH) using cyclic voltammetry (CV). Owing to the unique structure and extraordinary properties of MWCNT, the MWCNT film has shown an obvious electrocatalytic activity towards oxidation of CTZH, since it facilitates the electron transfer and significantly enhances the oxidation peak current of CTZH. All experimental parameters have been optimized. Under the optimum conditions, the oxidation peak current was linearly proportional to the concentration of CTZH in the range from 5.0×10(-7) to 1.0×10(-5)M. The detection limit was 7.07×10(-8)M with 180s accumulation. Finally, the proposed sensitive and simple electrochemical method was successfully applied to CTZH determination in pharmaceutical and urine samples.  相似文献   

7.
Mao L  Yamamoto K 《Talanta》2000,51(1):187-195
Electropolymerized film of Meldola's blue (MB) was prepared and demonstrated as electron shuttle between the immobilized horse peroxidase (HRP) and glassy carbon electrode (GCE) for sensing hydrogen peroxide (H(2)O(2)) produced by enzyme catalytical reactions. Electrochemical polymerization of Meldola's blue was carried out by cyclic voltammetry (CV) in a phosphate buffer solution (pH 7.00) in a potential window from -0.60 to +1.30 V. The pH of the electropolymerization solution was found to be closely related to the resulted polymeric MB and the best polymeric film was obtained in a pH 7.00 phosphate buffer. The polymeric MB was demonstrated to shuttle the electron transfer between the immobilized HRP and GCE and utilized as a mediator for HRP immobilized biosensor for biocatalytical reduction of H(2)O(2) at a potential of -0.30 V (versus AgCl/Ag). The H(2)O(2) sensing system was applied to construct glucose and choline on-line sensors by wiring H(2)O(2) produced by enzyme oxidase catalytical reaction. The possibility of these sensors as on-line detectors for on-line and continuous measurement was explored off-line. The operating potential, interference, and lifetime of these sensors were also examined.  相似文献   

8.
利用循环伏安法(-0.5~2.2 V)将4-(2-吡啶偶氮)间苯二酚(PAR)电聚合修饰到玻碳电极表面,制备了聚PAR膜过氧化氢(H2O2)传感器。 并采用循环伏安法和计时安培法研究了修饰电极的电化学性质和对H2O2的响应特性。 结果表明,PAR膜修饰电极在低的电位下对H2O2具有优异的电催化还原效应。 在磷酸盐缓冲溶液中(pH=8.0)用计时安培法对H2O2进行了测定(工作电位0.45 V),响应电流与其浓度在2×10-5~1.76×10-3 mol/L范围内呈良好的线性关系,线性相关系数r=-0.999 83,检测限(S/N=3)为3 μmol/L。该修饰电极灵敏度高、稳定性好、制备简单,在H2O2的测定中对抗坏血酸、尿酸和葡萄糖有较好的抗干扰性。  相似文献   

9.
Direct electrochemical and electrocatalytic behavior of myoglobin (Mb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethyl orthosilicate was investigated for the first time. Mb/sol-gel film modified electrodes show a pair of well-defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) redox couple at about -0.298 V (vs Ag/AgCl) in a pH 7.0 phosphate buffer solution. The formal potential of the Mb heme Fe(III)/Fe(II) couple shifted linearly with pH with a slope of 52.4 mV/pH, denoting that an electron transfer accompanies single-proton transportation. An FTIR and UV-vis spectroscopy study confirms that the secondary structure of Mb immobilized on an electrode by a sol-gel film still maintains the original arrangement. The immobilized Mb displays the features of a peroxidase and acts in an electrocatalytic manner in the reduction of oxygen, trichloroacetic acid (TCA), and nitrite. In comparison to other electrodes, the chemically modified electrodes used in this study for direct electrochemistry and electrocatalysis of Mb are easy to fabricate and fairly inexpensive. Consequently, the Mb/sol-gel film modified electrode provides a convenient way to perform electrochemical research on this kind of protein. It also has potential use in the fabrication of bioreactors and third-generation biosensors.  相似文献   

10.
制备了TiO2-石墨烯修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对间苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为6.0的磷酸盐缓冲液(PBS)中,该修饰电极对间苯二酚具有良好的电催化作用。对TiO2-石墨烯用量、支持电解质、pH和扫描速度等实验条件进行了优化。在优化条件下,利用DPV测定,间苯二酚的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.995。检出限为2×10-7mol/L。将该方法应用于模拟水样中间苯二酚的测定,回收率为96.5~104.2%。  相似文献   

11.
在4-氨基苯甲酸修饰的玻碳电极上制备了过渡金属取代杂多酸[ZnW11O39Mn(H2O)]8-(ZnW11Mn)多层膜.各层的循环伏安行为证明膜的增长均匀,峰电流随层数的增加而增加.与其在溶液中的氧化还原行为相比,多层膜中的ZnW11Mn显示出一些特殊的性质.还讨论了pH对其氧化还原行为的影响.该多层膜对BrO3-和H2O2的还原及抗坏血酸的氧化具有较好的电催化性能.  相似文献   

12.
用一步电沉积法制备了纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对邻苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为7.0的磷酸盐缓冲液(PBS)中,该修饰电极对邻苯二酚具有良好的电催化作用,其电化学信号与邻苯二酚的浓度在1.0×10-6~2.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.991。检出限为1×10-7mol/L。结果表明,纳米铜/石墨烯/壳聚糖复合膜修饰电极显著提高了邻苯二酚的电化学响应信号,并表现出良好的选择性和重现性。该方法成功用于水样中邻苯二酚含量的测定。  相似文献   

13.
构建了不同百分含量的氮掺杂的多壁碳纳米管化学修饰石墨电极,利用线性扫描伏安法及循环伏安法研究了双酚A(BPA)在修饰电极上的电化学行为。提出了一种灵敏、简便的直接检测双酚A的电化学分析方法。在pH6.98的PBS缓冲溶液中,在电位0.20 V富集后,该修饰电极在0.680 V出现一个灵敏的、峰形好的氧化峰。表明氮掺杂多壁碳纳米管薄膜对双酚A的氧化表现出一定的催化作用,能显著提高双酚A的氧化峰电流。在优化条件下,采用线性扫描伏安法对双酚A进行测定。双酚A的氧化峰电流与其浓度在2.5×10-7~1.0×10-4 mol/L之间有很好的线性关系(R为0.996),检出限为5.0×10-8mol/L。电极已初步用于实际样品中BPA的测定。  相似文献   

14.
壳聚糖-铜复合物修饰电极对过氧化氢电催化性能的研究   总被引:1,自引:0,他引:1  
将壳聚糖与铜盐通过配位结合制得壳聚糖-铜复合物(CTS-Cu),并用其修饰玻碳电极,使用循环伏安法和计时安培法研究了该修饰电极对H2O2的电催化性能,对其催化机理进行了探讨.优化的实验条件为:以0.1 mol/L.磷酸缓冲溶液(PBS,pH 7.0)为反应介质,CTS-Cu修饰液中的铜离子浓度为6 mmol/L,工作电...  相似文献   

15.
The present work describes preparation of hemoglobin‐incorporated multiwalled carbon nanotubes‐poly‐L ‐lysine (MWCNT‐PLL)/Hb) composite modified electrode film modified glassy carbon electrode (GCE) and its electrocatalytic behavior towards reduction of bromate ( ) in 0.1 M acetate buffer (pH 5.6). The modified electrode has been successfully fabricated by immobilizing hemoglobin on MWCNT dispersed in poly‐L ‐lysine. The surface morphologies of MWCNT, PLL and Hb were characterized using atomic force microscopy (AFM). The voltammetric features suggested that the charge transport through the film was fast and the electrochemical behavior resembles that of surface‐confined redox species. Cyclic voltammetry was used to investigate the electrocatalytic behavior of the modified electrode towards bromate and was compared with that of the CNT‐modified as well as bare electrode. The analytical determination of bromate has been carried out in stirred solution at an optimized potential with a sensitivity of 7.56 μA mM?1 and the calibration curve was linear between 1.5×0?5 to 6.0×0?3 M.  相似文献   

16.
采用电聚合方法制备了一种新的聚槲皮素(PQu)修饰电极,并用循环伏安法研究了该电极的电化学行为。在pH=4.0的B-R缓冲溶液中有一对准可逆的氧化还原峰,实验表明聚槲皮素电极过程是2电子2质子的可逆反应。该膜对抗坏血酸有良好的电催化作用,氧化峰电流与抗坏血酸浓度在4.76×10-6~1.0×10-4mol/L范围内呈良好的线性关系,检出限达1.5×10-6mol/L。尿酸不干扰抗坏血酸的测定。  相似文献   

17.
采用水热还原氧化法合成了高度分散的具有纳米纤维结构的钾矿型二氧化锰,并将其用来制作检测双氧水浓度的传感器.运用X射线衍射(XRD)仪、电子扫描显微镜(SEM)、透射电子显微镜(TEM)和比表面积(BET)及孔隙度分析仪观察和表征二氧化锰纳米纤维的结构和表面形貌;用电化学工作站(EW)检测其传感性能.结果表明:在pH为7.4的磷酸缓冲溶液中,开路电压为0.2V的条件下对0.1%(w,质量分数)的二氧化锰纳米纤维修饰的玻碳电极(GCE)进行测试,测试结果为随着双氧水的浓度每增加0.1mmo·lL-1,响应电流的峰值就增加约1.3μA,在双氧水的浓度在0.1-1.5mmo·lL-1范围内得到的线性相关系数为0.996,这种电极的高灵敏度和优异的电化学活性可能归因于钾矿型二氧化锰纳米纤维的特殊纳米结构.这种传感器有很高的灵敏度和很好的重现性.综上说明这种廉价并且有很好的电化学活性的材料为设计新型电极生物传感器提供了更大可能.  相似文献   

18.
Platinum (Pt) nanoparticles were electrochemically deposited on multi-walled carbon nanotubes (MWCNTs) through a three-step process, including an electrochemical treatment of MWCNT, electro-oxidation of PtCl4 2− to Pt(IV) complex, and an electro-conversion of Pt(0) on MWCNT. The effect of formation conditions for Pt(IV) complexes on the Pt nanoparticals transformed was investigated. The structure and elemental composition of the resulting Pt/MWCNT electrode were characterized by transmission electron micrograph (TEM) and energy dispersive X-ray spectroscopy (EDX). The electrocatalytic properties of the resulting Pt/MWCNT electrode for methanol oxidation have been investigated. The high electrocatalytic activity and good stability of Pt/MWCNT electrode may be attributed to the high dispersion of platinum nanoparticles and the particular properties of the MWCNT supports.  相似文献   

19.
This work presents a sensitive voltammetric method for determination of folic acid by adsorbing methylene blue onto electrodeposited reduced graphene oxide film modified glassy carbon electrode (MB/ERGO/GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology of the MB/ERGO/GCE modified electrode was characterized using scanning electron microscopy, displays that both MB and ERGO distributed homogeneously on the surface of GCE. The MB/ERGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE, MB/GCE, and ERGO/GCE. The electrochemical behaviors of folic acid at MB/ERGO/GCE were investigated by cyclic voltammetry, suggesting that the modified electrode exhibited excellent electrocatalytic activity towards folic acid compared with other electrodes. Under physiological condition, the MB/ERGO/GCE modified electrode showed a linear voltammetric response from 4.0 μM to 167 μM for folic acid, and with the detection limit of 0.5 μM (S/N=3). The stability, reproducibility and anti‐interference ability of the modified electrode were examined. The developed method has been successfully applied to determination of FA in tablets with a satisfactory recovery from 96 % to 100 %. The work demonstrated that the electroactive MB adsorbing onto graphene modified electrode showed an enhanced electron transfer property and a high resolution capacity to FA.  相似文献   

20.
In this research, a glassy carbon electrode modified with the functionalized multi-wall carbon nanotubes (MWNT-COOHs) film was used as an amperometric sensor for the determination of S2O32-, SO23-, I- and SCN-. The electrochemical behavior of those oxidizable inorganic anions at this modified electrode was studied by means of cyclic voltammetry(CV). The experimental results indicate that the modified electrode exhibits a high electrocatalytic activity towards the oxidation of those anions with a relatively high sensitivity, a good stability and a long-life. Separated by ion chromatography(IC) with 1.25 mmol/L H2SO4 as an eluent,those oxidizable anions can be determined by the MWNT-COOHs modified electrode successfully. Under the optimal chromatographic conditions, the detection limits are 1.5 × 10-7 mol/L for S2O23-, 2. 5 × 10-7 mol/L for SO32-, 1.2 × 10-7 mol/L for I- and 2. 0 × 10-7 mol/L for SCN-, respectively. The method was applied successfully to the determination of those anions in environmental water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号