首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 734 毫秒
1.
连接基长度对Gemini表面活性剂胶团间相互作用的影响   总被引:3,自引:0,他引:3  
用电导率法和动态光散射法测定十二烷基三甲基溴化铵和季铵盐型Gemini表面活性剂胶团的电离度和扩散系数,并结合DLVO理论研究联接基长度和电解质浓度对胶团间相互作用的影响.实验结果表明,联接基团长度会改变胶团电离度和胶团表面电荷密度,从而影响胶团间的相互作用,其影响程度主要取决于联接基的吸电子能力和Gemini表面活性剂分子中两个带电基团的电荷重叠程度;电解质浓度对胶团间相互作用的影响可分为两种情况:在低电解质浓度时,胶团间的相互作用以排斥力为主,不利于胶团的生长;而在高电解质浓度时,胶团间的相互作用以吸引力为主,有利于胶团的生长.  相似文献   

2.
季铵盐Gemini表面活性剂胶团水溶液的流变性质   总被引:3,自引:0,他引:3  
用毛细管振荡剪切流动法研究联接基团为聚亚甲基链的季铵盐型Gemini表面活性剂C12-s-C12·2Br(s=2,4,8)的流变性质,并用动态光散射技术测定胶团生长过程中的胶团形状和大小的变化规律,探索联接基团长度对胶团形状、大小以及溶液流变性质的影响.实验结果表明,胶团形状和大小与联接基团长度有关,而溶液的流变性质主要由胶团的大小和形状所决定,球形和棒状(长椭球体)胶团溶液的流变性质以纯粘度为主,而线性胶团溶液则显示粘弹性质.此外,增加电解质浓度和降低温度均使溶液的粘度增大.  相似文献   

3.
联接基长度对Gemini表面活性剂流变性质的影响   总被引:3,自引:0,他引:3  
用毛细管振荡剪切流动法研究了联接基团为聚亚甲基链的阳离子Gemini表面活性剂的流变性质。实验结果表明,无论是普通单链单头基或Gemini表面活性剂,其流变性质主要由胶团的大小和形状所决定;随着联接基团长度的增加,胶团的轴比率变小,导致流动阻力减小,粘度降低。此外对于球形和棒状胶团溶液,其流变性质主要以粘性为主.弹性可忽略不计。在低剪切速率下,溶液属于牛顿型流体;而在高剪切速率下,则表现出准塑性流体性质。  相似文献   

4.
溴代十四烷基吡啶胶团长大的光子相关谱研究   总被引:6,自引:1,他引:6  
本文用光子相关谱方法在15—85 ℃温度范围内, 研究了溴代十四烷基吡啶(TPB)胶团在高盐量介质(0.5—2.0M NaBr)中的长大规律。自光子相关实验测定了胶团的平均流体力学半径。增加盐量、降低温度和增大活性剂浓度均使胶团变大。TPB胶团长大时由球转变为棒。自实验测量结果求算了在0.5 M和1.0 M盐中支配球-棒转变的平衡常数及热力学函数值。本文检验了梯子模型对TPB体系的适用性, 并对2 M盐介质中TPB胶团的长大具有不同的特征作了讨论。  相似文献   

5.
合成了含对苯氧基联接链的羧酸盐Gemini表面活性剂,研究了其胶团化特性.结果表明,该羧酸盐Gemini表面活性剂具有很低的cmc值,给出了cmc-T(温度)以及lncmc-(m+1)(烷烃链长)的回归方程.计算了胶团化的热力学函数变化,证实胶团化过程来自熵驱动,并表现出焓/熵补偿现象,在所考察的系列中,以(m+1)=11的胶团最为稳定.  相似文献   

6.
利用分子动力学模拟方法研究了系列离子液体型Gemini咪唑表面活性剂在水溶液中的表面活性和胶束化能力. 模拟结果表明,压力张量法得到的表面张力模拟值偏小,需乘以修正系数矫正;分子动力学模拟得到的临界胶束浓度变化规律与实验相符,可以定性比较不同结构的离子液体型Gemini咪唑分子间的胶束化能力;温度的升高会加剧分子的热运动,不利于离子液体型Gemini咪唑表面活性剂在水溶液中形成胶束;此外,研究还发现联接基不同的离子液体型Gemini咪唑表面活性剂可能遵循不同的胶束化机理.S≤6时,单个分子自组装成胶球后发生聚合形成大胶团.随着咪唑上长烷烃链碳数的增加,[Cn-4-Cnim]胶束化能力提高;而随着联接链长度增加,[C10-S-C10im]胶束化能力降低;当S >6时,分子联接基弯曲并伸入其它分子烷烃链内部以减小头基分离力,从而形成稳定的胶束或胶团.随着联接基团亚甲基数的增加,头基斥力减小,附加疏水相互作用增强,[C10-S-C10im]胶束化能力提高.  相似文献   

7.
季铵盐型Gemini表面活性剂的胶束化动力学研究   总被引:1,自引:1,他引:0  
采用停流法并结合Aniannson-Wall理论, 研究了联接基为(CH2)2, (CH2)3, (CH2)4和(CH2)6的季铵盐型Gemini表面活性剂胶束的形成-破坏过程. 动力学的研究结果表明, 胶束形成-破坏过程的弛豫时间(τ2)与联接基的长度、表面活性剂的浓度、反离子的浓度以及温度有关. 随联接基长度的增加, 季铵盐型Gemini表面活性剂胶束形成-破坏过程的弛豫时间缩短. 当温度高于293 K时, 随着反离子浓度的增加, 1/τ2将出现一个最低值. 根据核化焓结果提出了不同的联接基长度的季铵盐型Gemini表面活性剂具有不同的胶束形成-破坏过程的机理.  相似文献   

8.
本文合成了含酰胺基团和不含酰胺基团的两类Gemini阳离子表面活性剂,测定了其表面活性参数,研究了酰胺基团对表面活性剂的表面活性和聚集行为的影响。结果表明,酰胺基团提高了Gemini阳离子表面活性剂的临界胶团浓度,降低了胶团聚集数,增强了胶团微极性,增大了表面活性剂的饱和吸附量。  相似文献   

9.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

10.
郑玉婴  赵剑曦  郑欧  游毅  邱羽 《化学学报》2001,59(5):690-695
测定了Cemini阳离子表面活性剂C~m-----s-----C~m·2Br(m=8,10,12,;s=2,6及m=12;s=3,4)水溶液的电导,从电导(k)~表面活性剂浓度(c)曲线的转折点可求得临界胶团浓度cmc.实验发现,Gemini阳离子表面活性剂的胶团化倾向明显强于其“单体分子”)即单离子头基单烷烃链表面活性剂)。根据质量作用模型计算了胶经过程的吉布氏能、焓和熵的改变。结果表明Gemini表面活性剂聚集机理和其对应的“单体分子”类似,主要来自熵驱动。所有的焓/熵补偿图均呈现良好的线性关系,补偿直线在γ轴的截距随s减小而变小,这意味着具有较小s的Gemini表面活性剂倾向于生成稳定的胶团。  相似文献   

11.
In this work, three didodecyl dicationic dibromide dimeric surfactants 12-s-12,2Br(-), with different methylene spacer lengths (s=7, 9, and 11) were prepared and characterized and their properties compared to those of 12-s-12,2Br(-) surfactants with s=2, 3, 4, 5, 6, 8, 10, and 12. Information about the critical micelle concentration, the micellar ionization degree, the average aggregation number and the polarity of the interfacial region, and microviscosity of the micellar interior was obtained by using different techniques. Their surface activity was investigated by means of surface tension measurements. Micellization was also studied by using (1)H NMR and diffusion NMR (DOSY) spectroscopy as well as isothermal titration calorimetry. The values of the thermodynamic parameters show that the dimeric surfactants micellization is exothermic and driven by entropy. The occurrence of morphological transitions upon increasing surfactant concentration was studied, and the results indicate that the spacer length, s, plays a key role in the micellar growth of 12-s-12,2Br(-) aggregates. The value of s not only control the magnitude of C(*), the surfactant concentration above which the morphological transition from spherical micelles into elongated ones occurs, but also the sign of the enthalpy change accompanying the sphere-to-rod transition.  相似文献   

12.
The change in the morphology of a series of dicationic gemini surfactants C(14)H(29)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(14)H(29), 2Br(-) (14-s-14; s=4-6) on their interaction with inorganic (KBr, KNO(3), KSCN) and organic salts (NaBenz, NaSal) have been thoroughly investigated by means of (1)H NMR spectral analysis and the results are well supported by viscosity measurements. The presence of salt counterions results in structural transition (spherical to nonspherical) of gemini micelles in aqueous solution. With an increase in salt concentration all the three gemini surfactants showed changes in their aggregate morphology. This change is dependent on the nature and size of the added counterion. The effect of inorganic counterions on the micellar growth is observed to follow the Hofmeister series (Br(-) < NO(3)(-) < SCN(-)). The roles of organic counterions are discussed on the basis of probable solubilization sites of the substrate molecule in the gemini micelles, showing more growth in case of Sal(-) than Benz(-). The results are confirmed in terms of the obtained values of chemical shift (δ), line width at half height (lw), and relative viscosity (η(r)). Also, the growth of micelles was most pronounced for the gemini surfactant with the shortest spacer (s=4). This was attributed to the unique molecular structure of gemini surfactant micelles having flexible polymethylene spacer chain linking the twin polar headgroups.  相似文献   

13.
The mixed micelles of cationic gemini surfactants C12C(S)C12Br2 (S=3, 6, and 12) with the nonionic surfactant Triton X-100 (TX100) have been studied by steady-state fluorescence, time-resolved fluorescence quenching, electrophoretic light scattering, and electron spin resonance. Both the surfactant composition and the spacer length are found to influence the properties of mixed micelles markedly. The total aggregation number of alkyl chains per micelle (N(T)) goes through a minimum at X(TX100)=0.8. Meanwhile, the micropolarity of the mixed micelles decreases with increasing X(TX100), while the microviscosity increases. The presence of minimum in N(T) is explained in terms of the competition of the reduction of electrostatic repulsion between headgroups of cationic gemini surfactant with the enhancement of steric repulsion between hydrophilic headgroups of TX100 caused by the addition of TX100. The variations of micropolarity and microviscosity indicate that the incorporation of TX100 to the gemini surfactants leads to a more compact and hydrophobic micellar structure. Moreover, for the C12C3C12Br2/TX100 mixed micelle containing C12C3C12Br2 with a shorter spacer, the more pronounced decrease of N(T) at X(TX100) lower than 0.8 may be attributed to the larger steric repulsion between headgroups of TX100. Meanwhile, the increase of microviscosity and the decrease of micropolarity are more marked for the C12C12C12Br2/TX100 mixed micelle, owing to the looped conformation of the longer spacer of C12C12C12Br2.  相似文献   

14.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

15.
Steady-state fluorescence, time-resolved fluorescence quenching, and isothermal titration microcalorimetry have been used to study the interactions of cationic gemini surfactants alkanediyl-alpha,omega-bis(dodecyldimethylammonium bromide) (C(12)C(S)C(12)Br(2), S = 3, 6, and 12) with hydrophobically modified poly(acrylamide) (HMPAM) and unmodified poly(acrylamide) (PAM). Without addition of gemini surfactant, 0.2 wt % HMPAMs except PAM have already self-aggregated into hydrophobic aggregates. Different from single-chain surfactants, C(12)C(S)C(12)Br(2) have stronger interactions with HMPAMs to form surfactant/polymer aggregates, even with PAM. Addition of C(12)C(S)C(12)Br(2) may cause the disruption of HMPAM hydrophobic aggregates and the formation of mixed micelles. It is found that HMPAMs generate lower micropolarity of mixed micelles, larger values of enthalpy of interaction (DeltaH(ps)), and nearly constant values of Gibbs free energy of interaction (DeltaG(ps)). On the other hand, C(12)C(S)C(12)Br(2) with longer spacer brings out slightly lower micropolarity of mixed micelles, owing to the lower electrostatic repulsion between surfactant headgroups. Especially for C(12)C(12)C(12)Br(2), the values of DeltaH(ps) are much more endothermic and the values of DeltaG(ps) are much less negative. The weaker interactions of C(12)C(12)C(12)Br(2) with HMPAMs arise from the marked reduction of attraction between surfactant headgroups and polymer hydrophilic groups induced by its longer spacer.  相似文献   

16.
The dehydrobromination reaction 2-(p-nitrophenyl)ethyl bromide + OH? was investigated in several alkanediyl-α-ω-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br? (with s = 2, 3, 4, 5, 6, 8, 10, 12) micellar solutions, in the presence of NaOH 5 × 10?3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br? micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br? micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to water.  相似文献   

17.
The reaction methyl naphthalene-2-sulfonate + Br(-) was investigated in several alkanediyl-α-ω-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (with s = 2, 3, 4, 5, 6, 8, 10, 12), micellar solutions in the absence and in the presence of various additives. The additives were 1,2-propylene glycol, which remains in the bulk phase, N-decyl N-methylglucamide, MEGA10, which forms mixed micelles with the dimeric surfactants, and 1-butanol, which distributes between the aqueous and micellar phases. Information about the micellar reaction media was obtained by using conductivity and fluorescence measurements. In all cases, with the exception of water-1,2-prop 12-5-12,2Br(-) micellar solutions, with 30% weight percentage of the organic solvent, a sphere-to-rod transition takes place upon increasing surfactant concentration. In order to quantitatively explain the experimental data within the whole surfactant concentration range, a kinetic equation based on the pseudophase kinetic model was considered, together with the decrease in the micellar ionization degree accompanying micellar growth. However, theoretical predictions did not agree with the experimental kinetic data for surfactant concentrations above the morphological transition. An empirical kinetic equation was proposed in order to explain the data. It contains a parameter b which is assumed to account for the medium micellar kinetic effects caused by the morphological transition. The use of this empirical equation permits the quantitative rationalization of the kinetic micellar effects in the whole surfactant concentration range.  相似文献   

18.
Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号