首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have performed direct experimental measurements of the critical distance for the secondary ion formation process. To this end, we compared the experimentally measured energy distribution of secondary Si ions with the theoretical energy distribution (Sigmund-Thompson relation) of secondary Si atoms. Our model states that the maxima positions of these two energy distributions differ by the Coulomb interaction potential between the outgoing ion (Si in our case) and a charge with the opposite polarity formed at the surface after electron transition between the outgoing Si atom and the surface. Quite a reasonable value was obtained for the critical distance, but with a large scatter in experimental data. The conclusion has been made that the experimental technique should be improved to get more precise values of the critical distance, which is of high importance for practical purposes.  相似文献   

2.
The process by which atoms are ionized as they are sputtered from a metal surface has been analyzed both theoretically and experimentally. In the theoretical part the expressions for ionization coefficient R+ of atoms having the ionization energy much larger than the metal work function have been derived using a molecular orbital method. The effect of the level crossing was estimated in an approximate way. In the experimental part the SIMS experiments on clean Ni and Al surfaces and on Ni surface covered with a submonolayer of adsorbed K, Na and Al are reported. It has been found and it is for the first time reported that the energy distribution of ions sputtered from a submonolayer of adatoms is independent of energy (200–2500 eV) and mass (Ar+ Xe+ of incident ions and depends only upon the adsorption energy of the adatom. The energy distribution of ions sputtered from bulk samples has been found dependent on the primary ion energy. The measurement of the absolute value of R+ has shown that there is a strong correlation between the number of the adatom valence d-electrons and the value of R+, the value of R+ being smaller for atoms with more d-electrons. These experimental data have been compared with the theoretical expressions and the important role of the mechanism which takes into account the bending of the adatom energy level has been assessed.  相似文献   

3.
In this study we have investigated how the probability of ionization of sputtered Si atoms to form negative ions depends on the energy of the atoms. We have determined the ionization probability from experimental SIMS energy distributions using a special experimental technique, which included de-convolution of the energy distribution with an instrumental transmission function, found by separate measurements.We found that the ionization probability increases as a power law ∼E0.677 for particles sputtered with energies of 0-10 eV, then becomes a constant value (within the limits of experimental error) for particles sputtered with energies of 30-100 eV. The energy distributions of Si ions, measured under argon and cesium ion sputtering, confirmed this radical difference between the yields from low and high-energy ions.To explain these results we have considered ionization mechanisms that are different for the low energy atoms (<10 eV) and for the atoms emitted with higher energy (>30 eV).  相似文献   

4.
The intensity of light emitted from sputtered atoms and neutralized, scattered primary ions, excited during 4 keV Ne+ and Ar+ bombardment of oxidized magnesium has been measured as a function of the incidence angle. It was found that the photon yield of sputtered atoms increases with the angle of incidence much more rapidly than the theoretical sputtering yield and the photon yield of scattered projectiles. In order to explain the experimental results a numerical approach was made based on the following assumptions: (1) the sputtered atom can be excited when it crosses the surface after getting the momentum from the collision cascade; (2) at oblique incidence the sputtered excited atom can be directly emitted after a gentle collision between the incident ion and the surface atom; (3) the neutralized primary ion can only be excited in a violent collision with the surface atom.  相似文献   

5.
A novel quantification approach is applied to determine in situ the amount of surface oxygen within the sputtered particle escape depth during steady-state sputter depth profiling of silicon under simultaneous oxygenation with an oxygen flood gas or with an oxygen primary ion beam. Quantification is achieved by comparing the secondary ion intensities of 16O that is adsorbed or implanted at the Si surface with the measured peak intensities of a calibrated 18O ion implant used as a reference standard. Sputtered ion yields can thereby be related to surface oxygen levels. In the present work the dependences of the partial silicon sputter yield Y and of the positive and negative secondary ion useful yields UY(X±) (X = B, O, Al, Si, P) on the oxygen/silicon ratio, O/Si, in the sputtered flux are studied for 40Ar+ bombardment of Si with simultaneous O2 flooding. The silicon sputter yield is found to decrease with increasing flood pressure and O/Si ratio by up to a factor of 3. Both positive and negative secondary ion yields are enhanced by the presence of oxygen at the silicon surface. The useful ion yield of Si+ scales non-linearly with the atom fraction of surface oxygen; this behavior is shown to invalidate models that suggest that Si+ ion yield enhancement is dominated either by isolated oxygen atoms or by formation of SiO2 precipitates. In contrast a microscopic statistical model that assumes that local Si+ ion formation depends only on the number of oxygen atoms coordinated to the Si atom to be ejected fits the ion yield data quantitatively.  相似文献   

6.
We have observed the motion of Sm+ ions as well as Sm atoms produced by femtosecond laser ablation of a solidified samarium solution sample on substrates by using a planar laser-induced fluorescence method. Kinetic energies of both Sm+ ions and Sm atoms increase as the electrical conductivity of the substrate decreases, which suggests the effect of surface charging. The kinetic energy of Sm+ ions is larger than that of Sm atoms for a variety of substrates due to the further electrical acceleration by the surface charge. The knowledge of ion motion will be the key information for the optimization of femtosecond laser simultaneous atomization and ionization of organic and inorganic samples on substrates.  相似文献   

7.
Despite its great sensitivity, the usefulness of secondary ion mass spectrometry (SIMS) for many applications has been limited by an inadequate understanding of the probability of sputtering an atom in an ionized state. To determine this ionization probability for clean Cu and Ni surfaces, I have measured the energy distribution of sputtered neutrals and ions by quadrupole mass filtering and retarding potential analysis using potential modulation differentiation. Analysis of sputtered neutrals was accomplished by electron impact ionization. Because the neutrals outnumber the ions by at least two orders of magnitude, the ratio of sputtered ions to neutrals is an accurate measure of the ionization probability. For energies below 20 eV the dependence of the ionization probability on energy goes as P(E) α En, where n = 0.65 for clean Cu. The absorption of oxygen on the Cu surface increases the total ion yield while causing a reduction in the value of the exponent n. Similar results are found for nickel, where n = 0.54 for the clean surface.  相似文献   

8.
T. Ohwaki  Y. Taga 《Surface science》1985,157(1):L308-L314
The yield and energy distribution of positive secondary ions emitted from Si under N2+ ion bombardment were measured. The obtained mass peaks correspond to three types of secondary ion species, that is, physically sputtered ions (Si+, Si2+), chemically sputtered ions (SiN+ Si2N+) and doubly charged ions (Si2+). The dependence of secondary ion emission on the primary ion energy was studied in a range of 2.0–20.0 keV. The yields of physically and chemically sputtered ions were almost independent of the primary ion energy. The yield of the doubly charged ion strongly depended on the primary ion energy. The energy distribution of secondary ions of the three types showed the same dependence on the primary ion energy. The most probable energy of the distribution increased with the primary ion energy. On the other hand, for the energy distribution curves of sputtered ions, the tail factors N in E?N were constant and showed a m/e dependence.  相似文献   

9.
It is important to optimize the resonance ionization efficiency of the sputtered particle by evaluating the internal energy of it. And also the dependence of the change of the internal energy of it on primary ion species and accelerating voltages was investigated. For this study, we developed proto-type resonance laser ionization SNMS instrument, which is a quadrupole SIMS apparatus combined with a wavelength tunable laser. The internal energy of the sputtered aluminum atoms, which has lowly lying excited state (112 cm−1) on the ground state, was monitored. As the results, the internal energy of the sputtered aluminum atoms was not influenced by the change of the surface work function and primary ion beam energy at all. On the contrary, the density on lowly lying excited state drastically increased due to the existence of the oxygen on aluminum surface.  相似文献   

10.
The secondary-ion energy distribution obtained by sputtering clean and oxygen-covered Be has been analyzed in terms of competing processes in secondary ion emission. The ion energy distribution N+(E) has been separated into an ionization coefficient R+(E) and a total energy distribution, N(E), i.e. N+(E) = R+(E) N(E). Experimentally, the dependence of R+(E) on both energy and oxygen coverage indicated a linear superposition of adiabatic tunneling and resonanance ionization processes from clean and oxygen-covered portions of the surface with no contributions to the secondary-ion yield from regions of intermediate coverage. Total energy distributions of sputtered Be atoms have been deduced and the principal features agree with the predictions of the collision cascade sputtering model. Variations of the energy distributions with oxygen coverage are in accord with small changes expected in the surface binding energy as a result of surface oxidation.  相似文献   

11.
R. Shimizu  T. Okutani 《Surface science》1982,116(1):L173-L178
Surface composition of Au-Cu(43 at%) alloy under 1.5–5 keV argon ion bombardment has been investigated by ion scattering spectroscopy (ISS). In this experiment, we adopted a specific technique to use mixed He+ and Ar+ ions as primary beam in order to perform sputtering (Ar+) and ISS measurement (He+) simultaneously. The outermost atom layer of Au-Cu alloys under Ar+ ion bombardment is Au-rich leading to the conclusion that Ar+ ion bombardment of AuCu alloys causes the preferential sputtering of Cu atoms, resulting in a Au-rich outermost atom layer and a depletion layer of Au atoms beneath the outermost atom layer due to ion-beam-enhanced surface segregation. This result explains the experimental results obtained by AES as well.  相似文献   

12.
This paper reports preliminary results obtained on an experimental apparatus dedicated to the study of angular resolved energy distribution of particles emitted from a sputtered target. Secondary ions emitted during the bombardment of a silicon target by xenon ions at a primary energy of 10keV have been studied. In its low energy part the distribution reaches a maximum around 8eV, and then decreases according to an E –1 law. In the range 200eV to 1000eV, a second maximum appears whose height depends on the emission angle. Apart from this range, the angular distributions have a cosine square-like shape. On the contrary, the angular distribution of ions with energy between 200eV and 1000eV is pointed in a forward direction near the specular reflection direction of the ion beam. It is assumed that the measured ions correspond to two ionic populations: secondary ions sputtered according to the linear cascade theory and recoil silicon target ions.  相似文献   

13.
The angular distribution of atoms sputtered from germanium under 1–20 keV Ar+ ion bombardment (normal incidence) has been studied experimentally and using computer simulations. A collector technique combined with Rutherford backscattering to analyze the distribution of collected material was used. In addition, the surface topography was under control. It was found that the experimental angular distribution of sputtered atoms (E 0=3–10 keV) could be approximated by the function cos n θ with n≈ 1.65. Such a high value of n is connected with the surface scattering of ejected atoms and a noticeable contribution of backscattered ions to the formation of the sputter flux (the mass effect). The target surface was found to be practically flat even at ion fluencies ~1018 ions/cm2. The results obtained are compared with data from the literature, including our recent data on Si sputtering.  相似文献   

14.
The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Arm * metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He2 + ions and Hem * metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1–5 % Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached. Received: 14 October 2002 / Revised version: 28 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +32-3/820-23-76, E-mail: annemie.bogaerts@ua.ac.be  相似文献   

15.
A new microscopical quantum-mechanical model of ionization of sputtered particles is described which takes into account electron excitations due to the atomic motions in the substrate. The substrate is represented by a simple atomic, metal-like, chain. Numerical calculations yield ionization probabilities R+ which have magnitudes close to the experimental values and have realistic velocity dependence. The function of R+ versus the sputtered atom ionization energy can be well approximated by the Maxwell-Boltzmann law with an effective temperature of about 3500 K.  相似文献   

16.
张连珠  孟秀兰  张素  高书侠  赵国明 《物理学报》2013,62(7):75201-075201
采用两维PIC/MCC模型模拟了氮气微空心阴极放电以及轰击离子 (N2+,N+) 的钛阴极溅射. 主要计算了氮气微空心阴极放电离子 (N2+,N+) 及溅射原子Ti的行为分布, 并研究了溅射Ti 原子的热化过程. 结果表明: 在模拟条件下, 空心阴极效应是负辉区叠加的电子震荡; 在对应条件下, 微空心较传统空心放电两种离子 (N2+,N+) 密度均大两个量级, 两种离子的平均能量的分布及大小几乎相同; 在放电空间N+的密度约为N2+的1/6, 最大能量约大2倍; 在不同参数 (P, T, V)下, 轰击阴极内表面的氮离子(N2+,N+)的密度近似均匀, 其平均能量几乎相等; 从阴极溅射出的Ti原子的初始平均能量约6.8 eV, 离开阴极约0.15 mm处几乎完全被热化. 模拟结果为N2微空心阴极放电等离子体特性的认识提供了参考依据. 关键词: 微空心阴极放电 PIC/MC模拟 2等离子体')" href="#">N2等离子体  相似文献   

17.
The dynamics of a solid bombarded by a 600 eV Ar+ ion have been studied classically by computer simulation. The model uses a crystallite of about 250 atoms described by pair potentials derived from elastic constants and which reproduce the surface binding energy of the solid. The relative calculated yield of secondary atom emission from the three low index faces of Cu follow the previously determined experimental order (111) > (100) > (110). We find major differences in the sputtering mechanisms for these faces. On (110), the impacted atom is ejected most frequently, while on (111) and (100) it almost never leaves the solid. We report the energy distribution of the sputtered particles for each face. The simulation successfully predicts the shape of the curve including the low energy maximum which is observed experimentally near 2 eV. In addition our model shows that many low energy atoms attempt to leave the crystal but are subsequently trapped to the solid at large distances from their original sites. This mechanism of radiation enhanced diffusion inevitably occurs in conjunction with sputtering or any other heavy secondary particle emission or scattering process.  相似文献   

18.
We present a theory of resonant charge exchanges, between sputtered atoms and metal surfaces, in which surface effects occur as quasi-molecular correlations in the diatomic systems formed, in the collision cascade, between secondary emitted atoms and their nearest-neighbor substrate atoms that have provided the last impulse for ejection. We set up a generalized Anderson-Newns Hamiltonian, from first principles, using a truncated and orthonormal set of states obtained from the valence orbitals of the diatomic system and from a continuous basis of jellium wave functions. We calculate the one-electron matrix elements appearing in the equations of motion for the annihilation operators of the truncated set in comparison with those resulting from the basic theory of resonant charge transfer. We determine the ionization probability of secondary emitted atoms versus their final emission velocities and we find it to be in good agreement with experimentally derived data on the Cu+/Cu-system. We support the hypothesis that the bare Anderson-Newns hopping mechanism needs to be completed with another charge transfer channel at the low energies of secondary ion emission.  相似文献   

19.
Large and face dependent neutral fractions have been found recently in the scattering of Li+ by Cu(1 0 0) and Cu(1 1 1) surfaces. These results for high work function surfaces are unexpected within the ‘traditional’ picture of a Li+ ion departing from a jellium surface model. In the present work the Li+/Cu(1 0 0) and Li+/Cu(1 1 1) interacting systems are described by a previously developed bond-pair model based on the localized interactions between the projectile ion and the atoms of the surface, and on the extended features of the electronic band structure through the surface local density of states. By only including the resonant neutralization to the Li atom ground state we explained the face and energy dependences of the measured neutral fractions for large outgoing energy values. We found that the downward shift of the Li ionization level below the Fermi level caused by the short range chemical interactions, is the main responsible of a high neutralization by the resonant mechanism. The remaining differences between theory and experiment values can be explained in terms of the energy gaps and image potential states appearing in these surfaces. The calculated distance behaviours of the energy levels corresponding to the first excited (Li-1s22p) and the negative (Li-1s22s2) atomic configurations indicate that they can also participate in the ion-surface charge exchange process.  相似文献   

20.
《Surface science》1986,177(3):593-614
Ion energy distributions in low temperature field evaporation obtained by pulsed-laser time-of-flight atom-probe, in general, show a FWHM of the spatial zone of ion formation to be 0.3–0.5 Å; post field ionization is not responsible for the ion formation. However, when ions of two or more charge states coexist a low energy tail can be found for the higher charge state ions, similar to those found for gas ions in field ionization. This tail can extend as far as 10 Å above the surface. Ions in the tail can only be produced by post field ionization. Double peak structures are found in the energy distributions of some ion species such as Mo2+; the origin of which is not yet understood. At a constant rate of field evaporation, as the field is gradually reduced by continued field evaporation and the laser power density appropriately increased, the charge states shift to the lower ones. For Mo, however, Mo2+2 ions are formed before Mo+ ions can be detected. The narrowness of the energy distributions shows that they are stable. This finding has an important implication to the study of the stability or Coulomb explosion of multiple charged cluster ions, and also the theory of field evaporation. Under intense laser irradiation, higher charge state ions can reappear and a large fraction of ions may have an excess energy of a few hundred eV. These may be produced by multiphoton ionization and also by interaction with the over-heated electrons in laser-solid interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号