首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
The elimination voltammetry with linear scan (EVLS) was used to study adenine and cytosine reduction signals at the mercury electrode. In comparison with the linear scan voltammetry (which provides only one unresolved peak), two elimination functions provide good resolution of individual peaks and significant increase of sensitivity. The first elimination function eliminates the kinetic current (I(k)) and conserves the diffusion current (I(d)). The second elimination function eliminates kinetic and charging currents (I(k) and I(c)) simultaneously and conserves the diffusion current (I(d)). Both functions give two well-resolved peaks of adenine and cytosine in a wide concentration range, while the linear sweep voltammetry gives badly resolved peaks due to hydrogen evolution. The best resolution of peaks is observed in acetate buffer at pH 3.8 and the detection limit for both substances is 500 nM. The concentration dependence of EVLS peak heights for one substance at the constant concentration of the other substance is linear. The peak potentials differ in these elimination functions. The difference in EVLS peak potentials gives the possibility to evaluate alpha n(a). Elimination voltammetry with linear scan contributes to the resolution of cathodic signals of purine and pyrimidine bases at very negative potentials near supporting electrolyte discharge.  相似文献   

2.
Trnková L 《Talanta》2002,56(5):887-894
Electrochemical characteristics of native and denatured calf thymus DNA have been studied by voltammetry on a silver electrode (AgE). Experimental results obtained from linear sweep or cyclic voltammetry (LSV or CV) have been employed in elimination voltammetry. The elimination voltammetry with linear scan (EVLS), using the linear combination of the total currents measured at different scan rates, enables one or two selected particular currents to be eliminated. The best results have been obtained by using a function eliminating the kinetic and charging currents (I(k),I(c)), and conserving the diffusion current (I(d)). This function makes it possible to increase significantly voltammetric signals of native and denatured DNAs, and to reveal processes not detectable by conventional electrochemical methods. The influence of electrochemical pretreatment of silver electrode surfaces and of starting and switching potentials on DNA voltammetric signals have been discussed. Silver electrodes coupled with elimination voltammetry represent promising tools for developing new nucleic acids biosensors.  相似文献   

3.
《Electroanalysis》2006,18(7):662-669
Elimination voltammetry with linear scan (EVLS) was applied to the resolution of reduction signals of adenine (A) and cytosine (C) residues in short synthetic hetero‐oligodeoxynucleotides (ODNs) with different sequences of A and C. The EVLS evaluation required linear sweep voltammograms measured on a hanging mercury drop electrode (HMDE) at different scan rates. Compared to linear sweep voltammetry (LSV) and usual voltammetric methods the EVLS is capable of resolving the overlapped A and C signals, specifically by using the elimination function which eliminates the charging and kinetic currents (Ic, Ik) and conserves the diffusion current (Id). Since for an adsorbed electroactive substance this elimination function yields a well readable peak–counterpeak signal, the adsorptive stripping (AdS) procedure was favorably used. The adsorption of ODNs was carried out at ?0.1 V for accumulation time of 120 s under stirring. It was found that heights and potentials of LSV signals were affected by ODNs concentrations, pH, scan rates, time of accumulation, and stirring speed during the adsorption. While on LSV curves the only one reduction peak of A and C residues was observed in all ODNs, the EVLS yielded two separated peaks in dependence on A, C sequences and pH. Our results showed that the EVLS in connection with the AdS procedure is a useful tool for qualitative and quantitative studies of short ODNs and a promising sensitive method for the development of electrochemical sensor following the ODN sequences.  相似文献   

4.
Elimination voltammetry with linear scan (EVLS) in connection with renewed mini‐ drop mercury electrodes provides valuable information about the character and kinetics of processes at electrode/electrolyte interfaces. Based on the experiment related to the hydrogen evolution, it is presented that the EVLS is more sensitive than other voltammetric methods. Using miniaturized mercury electrodes, the EVLS is capable of detecting the effect of spherical diffusion associated with both the scan rates and the size of an electrode drop.  相似文献   

5.
Azidothymidine (AZT, 3'-azido-3'-deoxythymidine, Zidovudine, Retrovir) is an approved and widely used antiretroviral drug for the treatment of human immunodeficiency virus (HIV) infection. Dynamic electrochemical methods have been employed for the fast and inexpensive determination of this drug in natural samples. The electrochemical signal of AZT, resulting from the reduction of azido group, was studied by square wave voltammetry (SWV), linear sweep voltammetry (LSV) and elimination voltammetry with linear scan (EVLS) using a hanging mercury drop electrode (HMDE). This paper explores the possibility of determining AZT in the presence of native (dsDNA) or denatured calf thymus DNA (ssDNA), and/or some synthetic oligodeoxynucleotides (ODNs). The detection limit of AZT in the absence and in the presence of ssDNA (10 microg/ml) is 1 and 250 nM, respectively. It was found that the signal of AZT is not substantially affected by the presence of DNA. We can therefore assume that the electrons are transferred through the adsorption layer of nucleic acids. By using the elimination procedure, both irreversible reduction signals of AZT and DNA are augmented. Moreover, the elimination signal in the peak-counterpeak form may indicate the adsorption of the analytes on the electrode surface preceding an electron transfer.  相似文献   

6.
Yılmaz S  Uslu B  Ozkan SA 《Talanta》2001,54(2):351-360
A voltammetric study of the oxidation of etodolac has been carried out at the glassy carbon electrode. The electrochemical oxidation of etodolac was investigated by cyclic, linear sweep, differential pulse and square wave voltammetry using glassy carbon electrode. Different parameters were tested to optimize the conditions for the determination of etodolac. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 2.15 for differential pulse and square wave voltammetric techniques. The linear response was obtained in the ranges of 2.10(-6)-8.10(-5) M with a detection limit of 6.8x10(-7) and 6x10(-6)-8x10(-5) M with a detection limit of 1.1x10(-6) M for differential pulse and square wave voltammetric techniques, respectively. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of the etodolac in tablet dosage form and human serum.  相似文献   

7.
A newly developed electrochemical method--Elimination Voltammetry with Linear Scan (EVLS)--has been applied to the electrochemical study of nucleic acids (NAs) on a silver electrode. Using the linear combination of the currents measured at different scan rates, the EVLS is capable of eliminating one or two selected particular currents. It was shown that the elimination function conserving the reversible diffusion current and eliminating the charging and kinetic currents provides the significant increase of voltammetric signals of DNA. Due to the high sensitivity and resolution power, the EVLS can contribute to study behaviour of nucleic acids on the charged interface and can be applied to nucleic acid analyses and the development of DNA sensors.  相似文献   

8.
Electrochemical oxidations of aminopurines (adenine, 2‐aminopurine, 2,6‐diaminopurine) and their complexes with Cu(I) on a pencil graphite electrode were investigated by means of linear sweep voltammetry (LSV) and elimination voltammetry with linear scan (EVLS). The anodic process of the Cu(I)‐aminopurine complex, corresponding to the oxidation of Cu(I) to Cu(II), takes place in the potential range between 0.4 and 0.5 V (vs. Ag/AgCl/3 M KCl). At more positive potentials the aminopurines provide voltammetric peaks resulting from the oxidation of the purine ring. The stability of the accumulated complex layer was investigated by the adsorptive transfer stripping technique.  相似文献   

9.
The electrochemical behaviour of self-assembled monolayer (SAM) of aliphatic hexadecanethiol was studied by cyclic voltammetry (CV), elimination voltammetry with linear scan (EVLS) and crystal quartz microbalance (QCM). SAMs were electrochemically created on gold-coated QCM crystal through the sulphur in 1-hexadecanethiol molecule head group. The effect of thiol concentration and potential scan rate on the SAM formation was studied. Formation of SAM was confirmed by CV and QCM. EVLS results revealed the kinetically controlled process followed with electrode reaction in adsorbed state characteristic for SAM formation at lower concentration. The electrode reaction of a totally adsorbed electroactive species was indicated by means of a peak-counter peak signal at higher thiol concentration.  相似文献   

10.
《Electroanalysis》2003,15(19):1529-1535
Elimination voltammetry with linear scan (EVLS) has been applied to the resolution of reduction signals of adenine and cytosine in short synthetic homo‐oligodeoxynucleotides (dA9 and dC9). In comparison with the common electrochemical methods (linear sweep, differential pulse, and square‐wave voltammetry) EVLS enables one to resolve the overlapped signals by using the function which eliminates the charging and kinetic currents (Ic, Ik) and conserves the diffusion current (Id). For the adsorbed electroactive substance, this elimination function gives a good readable peak‐counterpeak which has successfully been utilized to the analysis of overlapped reduction signals of adenine and cytosine on hanging mercury drop electrode (HMDE). The height and potential of signals studied were affected by the dC9/dA9 ratio, the time of accumulation, the stirring speed during the adsorption, and pH. Our results showed that EVLS in connection with the adsorption procedure is a useful tool for qualitative and quantitative studies of short oligonucleotides.  相似文献   

11.
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0-8-7.0×106 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples.  相似文献   

12.
A novel carbon paste electrode modified with nanosized mesoporous MCM-41 was prepared, and used as an electrochemical sensor to study the electro oxidation of levodopa (LD), carbidopa (CD) and their mixtures. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and CD has been explored at the modified electrode. The electrochemical sensor displayed a good resolving function for the overlapping voltammetric responses of LD and CD into two separate peaks with a potential difference of 370 mV. DPV peak currents of LD increased linearly with concentration over the 0.13 μM to 1250.00 μM range and exhibited a detection limit of 0.072 μM. Also, the proposed electrochemical sensor was used for the determination of LD and CD in some real samples, using the standard addition method.  相似文献   

13.
Duan JP  Chen GN  Chen ML  Wu XP  Chen HQ 《The Analyst》1999,124(11):1651-1655
It was found that estradiol valerate could be adsorbed at a mercury electrode under open circuit. The adsorptive and electrochemical behaviors of estradiol valerate on a static mercury electrode were investigated by cyclic voltammetry, linear scan voltammetry and chronocoulometry. Based on this, a sensitive and selective adsorptive stripping square-wave voltammetric method was developed for the determination of estradiol valerate based on the optimization of solution conditions and electrochemical parameters. It was found that in a Britton-Robinson buffer solution containing 18% alcohol (pH 9.5), estradiol valerate gave a sensitive reductive peak at potential -1.29 V (vs. SCE) and the peak current was linear with the concentration of estradiol valerate in the range 2.0 x 10(-8)-2.5 x 10(-6) mol L-1. The detection limit was 1.1 x 10(-8) mol L-1. The interference of some common steroid estrogens was examined and it was found that they did not interfere in the determination of estradiol valerate in the present system.  相似文献   

14.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

15.
We report on the voltammetric determination of the flavonoid Baicalein by using a carbon paste electrode that was doped with multi-walled carbon nanotubes. The resulting sensor exhibits excellent redox activity towards Baicalein due to the large surface area and good conductivity of the electrode. Cyclic voltammetry at various scan rates was used to investigate the redox properties of Baicalein. At the optimum conditions, the sensor displays a linear current response to Baicalein in the 0.02–10 μM concentration range, with a limit of detection of 4.2 n M. The method was successfully applied to the determination of Baicalein in spiked human blood serum samples and in a Chinese oral liquid.
Figure
We construct a new voltammetric sensor, based on multi-walled carbon nanotubes (MWCNT) doped Carbon paste electrode(CPE), The proposed electrode can improve the oxidation of Baicalein intensively, which can applied to the quantitative determination of Baicalein with wide linear response and low detection limit.  相似文献   

16.
The voltammetric behavior of nifuroxime was investigated comparing stationary voltammetric methods with the recently proposed sequential-injection stripping analysis (SISA), by using cyclic voltammetry (CV) and differential-pulse voltammetry at bare and DNA-modified glassy carbon (GC) electrodes. In cyclic voltammetry, reduction of nifuroxime at DNA-modified electrodes gives rise to a well-defined peak, and in contrast to bare GC surfaces, a re-oxidation peak could be observed. Optimization of the pre-concentration process at the DNA-modified surface led to a significant enhancement of the voltammetric current response, a better defined peak shape and an improved dynamic range. Based on this optimized voltammetric procedure, SISA has been evaluated for the determination of nifuroxime. The flow-system significantly facilitates the regeneration of the DNA-modified electrode surface, hence diminishing problems related to accumulation and memory effects. The linear detection range could be extended to 65 microM with a detection limit (3 s) of 0.68 microM, which corresponds to an absolute amount of 21 ng nifuroxime.  相似文献   

17.
A new linear sweep voltammetric method for quantitative lamotrigine (LMT) determination based on an electrochemically pre-treated pencil graphite electrode (PGE*) is presented. Response characteristics of the PGE* toward the mentioned compound were investigated by cyclic voltammetry and linear sweep voltammetry. The quantitative determination of LMT revealed a wide linear range of 2.5 ⋅ 10−5–1.0 ⋅ 10−3 M with a detection limit of 1.94 ⋅ 10−5 M. The method was used successfully for LMT determination in a pharmaceutical formulation.  相似文献   

18.
The adsorption behaviour of flunitrazepam at the hanging mercury drop electrode was studied by staircase voltammetry and by adsorptive stripping differential pulse voltammetry. Flunitrazepam is adsorbed in the whole potential range, from the most positive values up to the reduction potential. Flunitrazepam reduction product is also adsorbed. The time dependence of the voltammetric response proves that a diffusion-controlled adsorption takes place. Flunitrazepam can be determined (down to nanomolar levels) by using adsorptive preconcentration prior to the differential pulse voltammetric scan. An application of such a method to flunitrazepam determination in human urine is described. The detection limit was 30 ng per milliliter of urine with a 20-sec accumulation time; the mean relative standard deviation was lower than 3.2% and the mean recovery 97.8%.  相似文献   

19.
The aim of the present work was to elucidate the mechanism of electrolytic deposition of Ni on paraffin‐impregnated graphite electrode (PIGE). This process is influenced by H2 evolution, which occurs in the same potential region. On the basis of the results obtained by linear and cyclic voltammetry, elimination voltammetry with linear scan (EVLS) was used to evaluate both processes. H2 Evolution alone was studied in sulfate supporting electrolyte, and the previously suggested mechanism for this process according to Volmer–Heyrovsky was confirmed by EVLS. It was found that both the Ni2+ concentration and pH affect the polarization behavior of PIGE significantly. Two separated cathodic peaks were observed at low Ni2+ and high H+ concentrations, and the separation was better at higher scan rates. EVLS confirmed the most‐probable mechanism of Ni deposition as being controlled by slow transfer of the first electron under formation of [NiOH]+ as an intermediate. EVLS also indicated slow reduction of H+ preceding the reduction of Ni2+. The same was confirmed by studying the anodic dissolution at different switching potentials. The results were complemented by scanning electron microscopy (SEM).  相似文献   

20.
For the determination of gentamicin in biomedical applications, sensitive, fast and low cost voltammetric sensor has been developed. Prepared sensor was successfully used for determination of gentamicine in synthetic urine samples with different voltammetric measurement methods. Firstly, glassy carbon electrode was modified using cyclic voltammetry technique by electropolymerization of 3-thiophenecarboxylic acid and 3-methylthiophene. Then, optimization of the electrochemical parameters was carried out for modified electrode. With this modified electrode, gentamicin determination was performed in the linear range of 0.05–4.00 mM. The correlation coefficient, limit of detection and limit of quantitation were calculated as 0.9999, 0.039 mM and 0.129 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号