首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of rare earth elements (REE) in a pooled soil sample collected from Zhangzhou, Fujian Province, China, was screened by a five-step sequential extraction procedure coupled with ICP–MS determination after preconcentration of REE and removal of the matrix by extraction with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HPMBP). The results showed that the distribution of REE in the different fractions of the pooled soil sample studied followed the order soluble species (46.76%) > species bound to organic matter (22.08%) > species in the residue (16.77%) > species bound to Fe–Mn oxides (2.02%). An effective method for speciation of REE, which utilized weak cation-exchange HPLC separation hyphenated with post-column derivatization and visible or on line ICP–MS detection, was, moreover, developed and successfully applied to the speciation of REE in the soluble extract of the pooled soil sample. The stability of known complexes of lanthanum during the HPLC separation was investigated with fluoride, citrate, and ethylenediamine tetraacetic acid (EDTA) chosen as ligands modeling those in the soil. REE in the soluble extract of the pooled soil sample were subsequently classified into three types of species –≤ + 1 charged complexes (negatively charged, neutral, and +1 charged), + 2 charged complexes, and “free” REE species. This method is expected to be useful for identification of bioavailable (or toxic) species of REE in environmental samples.  相似文献   

2.
The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP–MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 μg g−1 (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP–MS detection showed that γ-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of γ-glutamyl-Se-methyl-selenocysteine and γ-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.  相似文献   

3.
Speciation of Al in tea infusions was studied by size exclusion chromatography (SEC) and anion-exchange fast protein liquid chromatography (FPLC). Fractions were collected throughout the chromatographic separations and Al was determined “off line” by inductively coupled plasma optical emission spectroscopy (ICP–OES). Black, green, and red tea samples were investigated. The total concentration of Al in tea infusions was determined by ICP–OES and ranged between 0.5 and 4 mg dm−3. The pH of tea infusions ranged between 5.3 and 5.5. Data from SEC–ICP–OES analysis indicated that 10–35% of total Al in tea infusions was eluted at a retention volume corresponding to a molecular mass of approximately 3800 Da. The remaining Al was adsorbed on the column resin. The same tea infusions were also analysed by anion-exchange FPLC–ICP–OES. It was found experimentally that the same percentage of total Al as from the SEC column was eluted at a retention volume that corresponded to negatively charged Al-citrate. The remaining Al was adsorbed on the column resin. Identification of Al-binding ligands eluting under the chromatographic peak was performed by electrospray ionisation tandem mass spectrometry (ES–MS–MS) analysis. It was proven that ionic Al species in tea infusions (10–35% of the total Al) corresponded to negatively charged Al-citrate. The remaining species that was adsorbed on the SEC or FPLC columns was most probably bound to phenolic compounds. Speciation of Al in tea with milk or lemon was also studied. Results for tea with milk indicated that Al-citrate was not transformed and that approximately 60% of total Al was transformed into high-molecular-mass Al species. This fraction was subjected to sodium dodecyl sulfonate polyacryl gel electrophoresis (SDS–PAGE). The results indicated that Al was occluded by milk proteins (mostly caseins). When citric acid was added to tea infusions the percentage of negatively charged Al-citrate remained either the same or increased to 40% of total Al.  相似文献   

4.
Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA–ICP–MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP–MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90–110% (for rare earth elements 97–102%). Laser ablation ICP–MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP–MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP–MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP–MS.  相似文献   

5.
Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography–inductively coupled plasma mass spectrometry (LC–ICP–MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography–electrospray ionization tandem mass spectrometry (RPLC–ESI–MS–MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, γ-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC–ESI–MS–MS for three isotopes of Se78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and γ-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide γ-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC–ICP–MS and LC–ESI–MS–MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and γ-glutamyl-Se-methylselenocysteine could be determined by LC–ESI–MS–MS by measuring their typical product ions.   相似文献   

6.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples.  相似文献   

7.
Two methods for separation of transferrin (Tf) sialoforms, capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) with conventional UV absorbance detection, have been investigated and compared. First, conditions affecting the separation of the Tf isoforms by capillary zone electrophoresis and HPLC were carefully optimized. The use of 15 mmol L−1 borate buffer (pH 8.4) containing 3 mmol L−1 diaminobutane (DAB) as additive enabled good separation of the Tf isoforms by CE (75 cm×50 μm i.d. fused silica capillary) at 25 kV. In HPLC, a gradient of ammonium acetate (from 0 to 250 mmol L−1 in 45 min) buffered at pH 6 (Tris-HCl) proved suitable for separation of Tf isoforms on a Mono-Q HR 5/5 anion-exchange column. On-line specific detection of the iron associated with the different Tf isoforms, after Fe saturation, by inductively coupled plasma mass spectrometry (ICP–MS) was studied in detail to compare its analytical performance with UV detection. For both CE and HPLC an octapole reaction system (ORS) ICP–MS instrument was used to minimize polyatomic interferences on the 56Fe major isotope. Limits of detection of the different isoforms were in the range of 0.02–0.04 μmol L−1 Tf for HPLC–ICP (ORS)–MS. This hybrid technique proved more selective and reliable detection of transferrin isoforms with 2, 3, 4, 5, and 6 sialic acid residues (S2, S3, S4, S5, and S6) in real serum samples. Interesting results from iron speciation of Tf in serum from healthy individuals and from pregnant women are given.  相似文献   

8.
Laser-ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA–ICP–MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 μg g–1, in a laboratory standard were determined with an accuracy of 1% to ± 7% and a relative standard deviation (RSD) of 2–13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g–1 concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA–ICP–MS under wet plasma conditions, because the lower background signal and increased element sensitivity. Received: 4 January 2001 / Revised: 27 March 2001 / Accepted: 28 March 2001  相似文献   

9.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

10.
In theory, state of the art inductively coupled plasma mass spectrometry (ICP–MS) instrumentation has the prerequisite sensitivity to carry out multi-elemental trace analyses at sub-ng L−1 to sub-pg L−1 levels in solution. In practice, constraints mainly imposed by various sources of contamination in the laboratory and the instrument itself, and the need to dilute sample solutions prior to analysis ultimately limit detection capabilities. Here we review these sources of contamination and, wherever possible, propose remedial strategies that we have found efficacious for ameliorating their impact on the results of multi-elemental trace analyses by ICP–MS. We conclude by providing a list of key points to consider when developing methods and preparing the laboratory to routinely meet the demands of multi-elemental analyses at trace analytical levels by ICP–MS.  相似文献   

11.
A bulk liquid membrane system has been developed and applied to the simultaneous separation and preconcentration of up to seven heavy metals (copper, zinc, lead, cadmium, aluminium, manganese, and nickel) in seawater. Copper was selected to optimize transport conditions and then, under these conditions, the simultaneous extraction of other heavy metals was studied. The system achieved preconcentration yields ranging between 44.11% (Cd) and 77.77% (Cu) after nine hours of operation, the effectiveness of metal transport being Cu > Zn > Pb > Mn > Ni > Al > Cd. The system was applied to the preconcentration of four real seawater samples before their quantification by inductively coupled plasma–mass spectrometry (ICP–MS). Compared with the analytical procedures commonly used for trace metal determination in oceanography, the results obtained demonstrated that the new system may be used as a very clean (sample contamination-free), simple, and one-step alternative for semiquantitative, and even quantitative, simultaneous determination of heavy metals in seawater.  相似文献   

12.
An arsenobetaine [(CH3)3As+CH2COO] solution reference material, NMIJ CRM 7901-a, intended for use in the speciation of arsenic compounds, was developed and certified by the National Metrology Institute of Japan (NMIJ), part of the National Institute of Advanced Industrial Science and Technology (AIST). The high-purity arsenobetaine powder was synthesized from trimethylarsine [(CH3)3As], and it was dissolved in water in order to prepare 20 mg kg−1 of arsenobetaine standard solution. The solution was bottled in 500 bottles (each containing 10 ml). Certification of the CRM for arsenobetaine was conducted by NMIJ. The concentration of As was determined by four independent analytical techniques (ICP–MS, ICP–OES, GFAAS and LC–ICP–MS), and each result was converted to the arsenobetaine concentration by applying an appropriate factor. The arsenobetaine concentration in the CRM was thus certified.  相似文献   

13.
Liquid chromatography–fluorescence (LC–FLS), liquid chromatography–tandem mass spectrometry (LC–MS/MS) and inductively coupled plasma–mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC–FLS method exhibited the greatest sensitivity (0.0057 μg mL−1), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC–MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP–MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC–FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg−1 MGd was determined by LC–FLS as follows: plasma (0.025±0.002 μg mL−1), liver (2.89±0.45 μg g−1), and kidney (6.09±1.05 μg g−1). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC–MS/MS and ICP–MS methods. For a representative patient, ≥90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.  相似文献   

14.
Cd-bound phytochelatins (Cd–PCs) have been synthesised by incubation of Phaeodactylum tricornutum cell cultures with Cd and purified by size-exclusion chromatography–UV–Vis. These complexes, which were identified in previous work, have now been used as model substances to develop and optimise ion-pair chromatography (IPC) coupled to inductively coupled plasma–mass spectrometry (ICP–MS) for analysis of Cd–PCs. Subsequent analysis of samples taken from Silene vulgaris plants cultivated under heavy metal stress conditions revealed Cd signals but no Cd–PC signals. By use of isotopically enriched 116Cd–PCs the sample preparation steps were verified to determine the stability of the analytes. We observed species transformation between Cd–PCs and other unidentified Cd complexes. Consequently, the kinetic and thermodynamic lability of Cd–PCs are decisive factors in their detection.  相似文献   

15.
ICP–MS techniques based on isotope dilution analysis can be regarded as an emerging tool in quantitative protein analysis. Well-known concepts, for example species-specific and unspecific isotope dilution analysis, which promoted accurate and precise quantification in elemental speciation studies, have nowadays been transferred to the analysis of large biomolecules, e.g. proteins. Besides detection of heteroatom-containing proteins, the artificial introduction of metal-containing labels has attracted much attention and, as a consequence, ICP–MS-based isotope dilution techniques can serve as a valuable quantification tool. In particular, because isotope dilution ICP–MS techniques can enable absolute protein quantification, they can be regarded as an attractive technique in current and prospective proteomics. In this review, recent developments and applications will be highlighted and critically assessed.  相似文献   

16.
Inductively coupled plasma mass spectrometry (ICP–MS) has been used for the determination of thorium and light rare-earth elements (LREEs) in soil and soil water samples from a mineral deposit (Morro do Ferro, Minas Gerais, Brazil). Size-exclusion chromatography (SEC) on-line coupled to ICP–MS and UV-detection was applied to verify possible association/complexation of these elements with organic matter in soil water separated by a centrifugation technique. Concentrations of DOC in soil waters are in the range of 10 to 500 mg L–1 and correlate with the organic carbon content of the soil (r=0.950; p<0.001). Concentrations of 30 to 40 g L–1 for the LREEs (La, Ce, Nd) and up to 14 g L–1 for Th were measured in soil waters of highest DOC content. SEC chromatograms of these waters showed the association of elements with different nominal high-molecular-mass ranges, characteristic of soil humic and fulvic acids: >10,000 Da, with a retention time of about 10 min; 7000 to 8000 Da with retention times of 13 to 15 min; and 2000 to 4000 Da with retention times around 23 min. Elemental peaks associated with dissolved organic matter below 1000 Da were not observed, suggesting that complexation with simple plant organic acids or inorganic ligands is of minor importance in the environment studied in this work.  相似文献   

17.
The uptake of Cr, Mn, Ni, Cu, Zn, Cd and Pb in soft tissue of Perna perna mussels and their shells has been studied in aquarium experiments in which mussels were exposed for 30 or 60 days to seawater spiked with different concentrations of these contaminants (125 and 500 μg L−1). Tissue samples were analyzed after acid digestion by conventional solution nebulization ICP–MS. Laser ablation ICP–MS was used for the quantitative determination of trace elements in different areas of the corresponding shells. With the exception of Mn and Zn, all other elements studied showed a significant concentration enhancements in soft tissue, with the magnitude of this enhancement following the order: Cr > Ni > Cd > Cu > Pb. A corresponding increase in most contaminants, although less pronounced, was also observed in the newly formed growth rings of mussel shells, contributing to the validation of Perna perna mussel shell as a bioindicator of toxic elements.  相似文献   

18.
Minute amounts of tissue supernatants from mouse neonates bearing a mutation in the copper (Cu)-transporter gene, Atp7a, were injected into narrow-bore HPLC coupled with an inductively coupled plasma–mass spectrometer (ICP–MS) to examine Cu metabolism. In the 14-day-old mutant neonates, Cu accumulated in the intestine in the metallothionein (MT)-bound form, and mRNA expression of the two MT isoforms was increased. Meanwhile, Cu in the MT-bound form (Cu-MT) was depleted in the liver and mRNA expression decreased in comparison with wild-type mice. These results suggest that Cu is not secreted by intestinal microvillus cells into bloodstream due to the defect of Atp7a, and systemic depletion of Cu occurred. On the other hand, in the kidneys of mutant mice, Cu accumulated in the MT-bound form despite the fact that mRNA expression of the two MT isoforms was low. Part of Cu-MT in microvillus cells may be released into bloodstream at turnover and be preferably taken up by the kidneys. Consequently, the mRNA expression of MT isoforms was not always coincident with the amounts of MT proteins binding Cu, and narrow bore HPLC–ICP–MS used for MT protein determination is a complementary technique to real-time RT-PCR used for MT mRNA determination in Cu speciation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
An ICP–MS instrument fitted with an octopole reaction system (ORS) was used to directly measure the inorganic contents of several biofuel materials. Following sample preparation by simple dilution in kerosene, the biofuels were analysed directly. The ORS effectively removed matrix- and plasma-based spectral interferences to enable measurement of all important analytes, including sulfur, at levels below those possible by ICP–OES. A range of commonly produced biofuels was analysed, and spike recovery and long-term stability data was acquired. Suitably configured ICP–MS has been shown to be a fast and very sensitive technique for the elemental analysis of biofuels.  相似文献   

20.
A method has been developed for the separation of the entire group of rare-earth elements from high-purity calcium chloride by countercurrent chromatography, and subsequent determination of the elements by ICP– MS. A solution of diphenyl[dibutylcarbamoylmethyl]phosphine oxide in chloroform (0.5 mol L–1) has been chosen as reagent for the extraction and preconcentration of trace rare-earth elements from aqueous 5% CaCl2 solution, 3 mol L–1 in HNO3 and 0.1 mol L–1 in HClO4. The analytes are back-extracted into a small volume of water and the aqueous eluate is subjected to ICP–MS measurements. The performance characteristics of the procedure developed have been checked by use of the standard addition technique and a real CaCl2 sample (Merck product) has been analyzed. The results obtained demonstrate the applicability of countercurrent chromatography to the determination of ultratrace elements. Received: 6 December 2000 / Revised: 27 February 2001 / Accepted: 6 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号