首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们通过一种简单的化学方法制备了具有可见光催化性能的Bi6Fe1.9Co0.1Ti3O18/Au (BFCTO/Au)纳米复合材料。结果表明,通过负载不同颗粒大小的Au纳米颗粒(~23 nm、~36 nm、~55 nm和~80 nm),BFCTO的可见光光催化性能明显增强,其中负载粒径为~23 nm的Au纳米颗粒的BFCTO/Au-1样品的可见光光催化效率最高。  相似文献   

2.
采用简单的水热法制备出不同复合比例的MoS_2/Na_2Fe_2Ti_6O_(16)(MoS_2/NFTO)纳米复合材料,并对复合材料的形貌、化学组分、比表面积、孔径分布及Zeta电位进行表征和分析,研究了所得产物对甲基蓝(MB)染料的吸附性能及吸附动力学.结果表明,相对于纯Na_2Fe_2Ti_6O_(16),MoS_2质量分数为70%的MoS_2/NFTO复合材料的单位比表面积的吸附容量提高了58倍,对MB的吸附率提高了4.9倍.研究还发现,吸附剂对MB的吸附动力学符合准二级动力学模型.  相似文献   

3.
屈少华  贾丽慧 《物理化学学报》2009,25(11):2391-2394
通过纳米划痕测试技术(nano-scratch)研究了以Au和Au-Cu(xAu=93%, xCu=7%)为衬底, 多晶硅Si为基片的类金刚石(DLC)薄膜的机械性能, 其中DLC薄膜厚度约为10 nm. 研究结果表明, Au-Cu衬底对Si/DLC薄膜的结合力比Au衬底对Si/DLC薄膜的结合力要好. 紫外(244 nm)为激发光源的拉曼光谱测试结果显示在相同薄膜制备条件下Au-Cu衬底比Au衬底含有更多的sp3成分, 同时也意味着以Au-Cu为衬底的Si/DLC薄膜具有更高的硬度和密度. 通过对研究结果的分析讨论可以得出, 由于具有较好的结合力和高硬度, Au-Cu是磁记录磁头保护膜Si/DLC薄膜的更好lead材料.  相似文献   

4.
铌基半导体光催化材料因其具有独特的晶体结构和能带结构在光催化分解水制氢领域受到科研工作者的高度关注.然而,大多数铌基半导体光催化剂仅能够在紫外光驱动下实现光催化分解水制氢,具有可见光响应的铌基半导体光催化剂不仅数量少而且活性较低,因此发展新型纳米铌基半导体光催化剂并实现其高效可见光催化分解水产氢具有重要的学术和实用意义.具有烧绿石构型的Sn_2Nb_2O_7材料由于具有较窄的禁带宽度(2.4 e V)和合适的导带和价带电势在可见光催化分解水制氢方面引起了科研人员广泛的兴趣.然而,目前报道的利用高温固相法制备的块体Sn_2Nb_2O_7材料由于颗粒尺寸较大和比表面积较小而导致光催化活性较差.因此,发展一种简便高效的制备方法实现纳米Sn_2Nb_2O_7材料的可控制备进而提高其可见光催化活性仍具有一定的挑战性.我们发展了一种简便的两步水热合成方法实现了Sn_2Nb_2O_7纳米晶的可控制备.扫描电镜和透射电镜测试结果表明,通过两步水热法得到的Sn_2Nb_2O_7纳米颗粒具有较好分散度,其平均颗粒尺寸为20 nm.X射线衍射测试结果也进一步证明,通过两步水热法可以实现Sn_2Nb_2O_7纳米晶的可控制备.比表面积测试结果表明,Sn_2Nb_2O_7纳米晶的比表面积约为52.2 m~2/g,远远大于固相法制备的块体Sn_2Nb_2O_7材料(2.3 m~2/g).大量研究表明,大的比表面积有利于半导体催化材料催化活性的提升.通过考查所制备的Sn_2Nb_2O_7纳米晶的可见光分解水制氢能力,对其催化性能进行了评价.研究结果表明,以乳酸为空穴消耗剂,负载0.3wt.%Pt纳米颗粒作为助催化剂的Sn_2Nb_2O_7纳米晶表现出优异的可见光催化分解水产氢性能,其产氢速率是块体Sn_2Nb_2O_7材料的5.5倍.Sn_2Nb_2O_7纳米晶可见光催化分解水产氢性能提高的主要原因是其具有高分散度的纳米颗粒、较大的比表面积和更正的价带电势.首先,颗粒尺寸的纳米化能够显著减小光生电子和空穴的迁移距离,实现光生载流子快速迁移到催化剂表面进而参与催化反应;其次,大的比表面积能够提供更多的催化活性位点,进而有利于催化活性的提高;最后,X射线光电子能谱测试表明,Sn_2Nb_2O_7纳米晶具有更正的价带电势,研究表明,价带电势越正,其光生空穴氧化能力越强.在光催化分解水制氢过程中,具有较强氧化能力的光生空穴通过与空穴牺牲剂乳酸快速反应而被消耗掉,抑制了光生电子与空穴的复合,进而导致其具有较高的光催化产氢活性.  相似文献   

5.
采用尿素沉积法制备了Au/Ti O_2/Mo S_2等离子体复合光催化剂。通过光催化产氢实验,在10%(φ,体积分数)甘油水溶液为牺牲剂条件下,研究了不同Mo S_2含量、Au固载2%(w,质量分数)时,Au/Ti O_2/Mo S_2(ATM)复合样品的光催化产氢活性。结果表明,当Mo S_2含量为0.1%(w)时,复合样品ATM0.1显示出最高的光催化产氢活性,其产氢速率达到708.85μmol·h~(-1),是Ti O_2/Mo S_2(TM)两相复合样品中光催化活性最高样品TM6.0产氢速率的11倍。三相复合样品显示增强光催化产氢活性主要是由于吸附在Ti O_2/Mo S_2层状复合材料上的Au纳米颗粒具有表面等离子共振效应,能强烈吸收波长范围550–560 nm的可见光,诱导产生光生电子,金纳米颗粒上的电子受到激发后转移到Ti O_2导带上,Ti O_2导带上的电子传递给片状Mo S_2,最终在Mo S_2上催化氢气产生。  相似文献   

6.
光催化技术在常温下能够直接利用太阳能来驱动反应,已成为一种理想的环境污染治理和洁净能源生产技术.但是比较多的限制条件阻碍了光催化发展和实际应用,如何有效解决这些限制因素成为光催化技术走向工业化应用必须解决的问题.目前光催化材料研究存在的问题主要包括:(1)研究工作主要集中的粉体催化剂存在分离困难、难以重复利用的缺点,开发与基底结合牢固的薄膜材料是十分必要的;(2)光催化材料本身的光响应范围影响光催化材料的应用,拓宽催化剂材料的光吸收范围是亟待解决的;(3)光生电子和空穴的复合问题是影响光催化剂催化活性的主要因素之一,很多方法被用来阻止电子-空穴对的复合,如:金属和非金属的掺杂、贵金属修饰、异质结、新型催化剂结构的设计等,如何设计促进催化剂光生电子和空穴的分离成为光催化技术应用的重要问题.介孔单晶TiO_2通过自组装的方法被制备,成为TiO_2的一种新结构材料.介孔单晶TiO_2结合了介孔材料的大比表面积、单晶材料的电荷传输快等优点,对于光催化性能有了很大的提高.目前介孔单晶TiO_2主要是以粉体的形式存在,但是粉体TiO_2的应用受到多方面的影响,如:难回收不易重复利用,与电催化结合难,不能借助电催化提高电荷分离效率等.TiO_2薄膜能够解决粉体的不足,近年来,TiO_2光催化薄膜得到广泛的研究,TiO_2薄膜的制备方法很多,主要有液相制备方法、物理气相沉积法、化学气相沉积法、电化学方法、溅射法等.TiO_2薄膜主要是以纳米颗粒的形式沉积在基底上,并且多为多晶和无定形.而对于介孔单晶TiO_2薄膜的制备和研究还没有报道.我们通过直接焙烧一步法制备了介孔单晶TiO_2薄膜,并对TiO_2薄膜的生长情况、表面结构、TiO_2晶相和晶体完整程度的变化对性能的影响进行了研究.通过调变Ti与F的比例和煅烧温度,研究不同的制备条件对其性能的影响,从而制备高活性TiO_2薄膜.为了进一步提高介孔单晶TiO_2薄膜的活性和拓展其吸收光谱范围,使用高温热解自组装技术一步法制备了贵金属Au负载的介孔单价TiO_2薄膜,Au纳米颗粒跟TiO_2有较好的结合度.在可见光照射下,Au/TiO_2异质结构中Au表面由等离子体共振效应产生的活泼电子会注入TiO_2导带,使光生电子和空穴得到分离;同时Au具有特殊的可见光等离子体共振效应能显著改善TiO_2类宽带隙半导体的可见光响应性能.实验用还原Cr(VI)作为探针反应,考察不同Au含量对光催化性能的影响.  相似文献   

7.
多壁碳纳米管负载TiO_2复合器件可见光光催化降解RhB   总被引:3,自引:2,他引:1  
采用溶胶-凝胶法制备了多壁碳纳米管(MWCNTs)负载的ITO/MWCNTs-TiO2/ITO复合器件,利用SEM、XPS、UV-Vis光谱等技术对复合样品进行形貌和结构表征,以液相罗丹明B(RhB)的可见光光催化降解为探针反应,评价MWCNTs-TiO2复合薄膜的催化活性.XPS结果表明MWCNTs与TiO2之间没有形成Ti-C键.I-V特性表明负载了MWCNTs的ITO/MWCNTs-TiO2/ITO复合器件的光电流增强.与空白TiO2薄膜相比,MWCNTs-TiO2复合薄膜的可见光光催化降解RhB的速率提高了3.2倍.MWCNTs并没有掺杂到TiO2晶格中,而是起到了类似光敏剂的作用,可在可见光激发下将导带电子转移到TiO导带上,经一系列反应降解RhB有机物.  相似文献   

8.
目前,环境污染与能源危机是直接影响着人类生存与发展的两大难题.以半导体材料作为催化剂、太阳能作为驱动力的光催化技术由于具有成本低廉、清洁环保、反应条件温和等优点被认为是解决上述问题最具开发价值的理想方法,并得到科研工作者的广泛研究与关注.近几十年的研究表明,该技术在有机污水处理及光催化还原CO2转化成高能燃料领域均有良好表现.本文采用高温热聚合及酸处理剥离技术,以尿素作为原料,成功制备出薄层二维g-C_3N_4(CN)纳米片材料,并以该材料作为载体及催化主体,通过恒温水浴还原技术在其表面负载不同尺寸的Au纳米粒子,成功制备出一系列Au/CN复合光催化材料.运用系统的表征及测试手段,对所制备的二维光催化材料的晶相结构、化学组分、形貌和表面特征及光电化学特性进行了详细表征与研究,并针对该二维材料表面Au纳米粒子的尺寸效应、表面效应和等离子体共振效应(LSPR)等特性研究了复合材料界面间电子的传输效率与迁移机制.尺寸较小的Au纳米粒子的费米能级到CN导带底端的距离较短,其表面原子比例及缺陷含量较高,有利于Au纳米粒子对光生电子的捕获并抑制电子空穴对的复合.由于LSPR效应,可见光下Au表面可产生大量高能热电子并注入到CN表面,从而抑制光生电子从CN导带到Au表面的传输.三维时域有限差分法(FDTD)模拟结果显示, Au纳米颗粒的尺寸越大,拥有的LSPR效应越强,其表面热电子含量越高,光电子传输抑制现象越强烈.光电化学性能分析(PEC)结果显示,在颗粒分布密度合理的情况下,具有较小尺寸Au纳米颗粒的复合材料内部光生电子空穴对的分离效率越高.光催化实验表明,在Au纳米粒子分布合理的情况下,拥有最小Au纳米颗粒尺寸的3-Au/CN样品表现出最好的光催化活性.在可见光条件下照射30 min,该样品对罗丹明B水溶液(RhB, 10 mg/L)的光降解效率高达92.66%;紫外光条件下照射8h,该样品光催化还原CO_2转化成CO和CH_4的产率分别为77.5和38.5μmol/g,约是纯CN还原性能的6倍和10倍.结合文献报道及上述实验结果,我们提出了一个尺寸影响的光催化作用机制.  相似文献   

9.
采用溶剂热法,以聚酰胺-胺(PAMAM)树形分子为稳定剂,分别制备了Bi_(25)FeO_(40)和Bi_(25)FeO_(40)/α-Fe_2O_3复合纳米颗粒,并利用X射线衍射仪(XRD)、高分辨透射电镜(HRTEM)、X射线光电子能谱仪(XPS)、紫外-可见吸收光谱仪(UV-Vis)、比表面积和孔径分析仪(BET)和超导量子干涉磁强计等对其结构和性能进行了表征.结果表明,2种颗粒均为球形,尺寸均匀,粒径小于10 nm.当原料中Bi~(3+)/Fe~(3+)摩尔比为25∶1时,产物为Bi_(25)FeO_(40)纳米颗粒;Bi~(3+)/Fe~(3+)摩尔比为1∶1时,产物为Bi_(25)FeO_(40)/α-Fe_2O_3复合纳米颗粒.与Bi_(25)FeO_(40)纳米颗粒相比,Bi_(25)FeO_(40)/α-Fe_2O_3复合纳米颗粒的带隙变窄,对可见光吸收范围变宽,饱和磁化强度和光催化活性明显增强.这是由于复合颗粒中的α-Fe_2O_3具有超顺磁性,且两相界面存在的异质结构有利于光生载流子的分离和迁移,提高催化活性.2种纳米颗粒均可磁性回收,重复使用3次后催化活性下降较小.  相似文献   

10.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe_2 O_3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe_2 O_3(S))相比,氧化铁纳米棒(α-Fe_2 O_3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe_2 O_3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明, Au/α-Fe_2 O_3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现, Au/α-Fe_2 O_3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe_2 O_3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明, Au/α-Fe_2 O_3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

11.
采用静电纺丝技术与真空离子溅射相结合的方法制备了TiO2∶Au复合纳米纤维, 并采用SEM和X射线电子能谱仪对其进行了表征. 结果表明TiO2∶Au纳米纤维的表面形态能通过Au沉积时间得到很好的控制. 同时在紫外光照射下采用乙醛体系考察了TiO2纳米纤维和TiO2∶Au复合纳米纤维催化剂降解乙醛性能, 结果证明TiO2∶Au复合纳米纤维具有更好的催化效率, 紫外光照射70 min后乙醛被完全降解.  相似文献   

12.
基于中空多孔微纳米结构的结构特点以及贵金属Au纳米颗粒的催化活化作用,制备了Au纳米颗粒负载的SnO_2双层空心立方体,其CO气敏性能比纯相SnO_2纳米结构显著增强.本文对纯相和Au负载SnO_2双层空心立方体的结构、形貌和气敏性能进行了研究,发现均匀负载的Au纳米颗粒未显著破坏SnO_2双层空心立方纳米结构.CO气敏性能研究结果表明,Au负载SnO_2在最佳工作温度(220℃)下对24.7 mg/m~3(20 ppm)CO气体的灵敏度可达20.9,明显高于纯相SnO_2的灵敏度.Au负载SnO_2对CO气敏特性的显著增强不仅归因于双层空心立方结构的特殊结构优点,还可以归因于负载的Au纳米颗粒的催化活化作用.  相似文献   

13.
结合乳液聚合和还原法在250 nm的聚苯乙烯(PS)微球表面均匀负载了Au纳米颗粒.通过溶液共混法,使Au@PS纳米颗粒与聚二甲基硅氧烷(PDMS)/聚偏氟乙烯-三氟乙烯[P(VDF-TrFE)](质量比为2∶3)均匀混合,制备出结构致密、Au@PS均匀分布的微突起的复合薄膜.研究了不同Au@PS纳米颗粒掺杂量对复合薄膜的结构、熔融结晶行为和介电疏水特性的影响.研究发现,Au@PS纳米颗粒的引入阻碍了P(VDFTr FE)的β相的产生,但对PDMS/P(VDF-TrFE)复合薄膜的化学健结构没有显著影响;随着Au@PS纳米颗粒含量的增多,复合薄膜结晶温度和玻璃化转化温度升高,熔点略有降低.由于界面极化和微电容效应协同作用,掺杂Au@PS复合薄膜的介电常数有显著提升.PS球表面均匀负载的Au纳米颗粒减少了导电网络的构成,使介电损耗维持在较低值.掺杂5%(质量分数) Au@PS的复合薄膜介电常数达到22(100 Hz),分别为纯PDMS和PDMS/P(VDF-TrFE)的8. 8倍和3. 14倍,同时具有优异的疏水特性,接触角达到112. 31°.  相似文献   

14.
报道了Na_2Ti_3O_7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na_2Ti_3O_7纳米片。此外,腐蚀后的钦片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g~(-1)的电流密度下具有175mAh·g~(-1)的可逆容量,在2000mA·g~(-1)的电流密度下循环3000周后,其容量仍保持120 mAh·g~(-1),容量保持率为96.5%。Na_2Ti_3O_7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na_2Ti_3O_7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na_2Ti_3O_7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

15.
BiOBr因具有合适的能带结构和独特的层状纳米结构而广泛应用于可见光催化领域,但其低的可见光利用率和高的光生电子-空穴对复合率,限制了其实际应用.最近,非整比BiOBr纳米材料表现出了良好的可见光催化性能.本课题组分别采用简易水热法和常温法制备得Bi_(12)O_(17)Br_2和Bi_4O_5Br_2纳米片,并表现出良好的可见光催化性能.然而,对于Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理还不清楚.基于此,本文采用射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)等手段研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的理化性能,通过原位红外光谱(in situ DRIFTS)研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理.XRD结果表明,在常温碱性环境下,OH~-离子逐步取代BiOBr中的Br-离子制备得单斜晶相Bi_4O_5Br_2;在水热碱性环境下,OH-离子进一步取代Bi_4O_5Br_2中的Br-离子制备得四方晶相Bi_(12)O_(17)Br_2.SEM和TEM结果表明,Bi_(12)O_(17)Br_2是由不规则纳米片堆叠形成的紧密且厚实的层状结构,Bi_4O_5Br_2是由纳米片和纳米颗粒无序堆积形成的多孔疏松结构.BET-BJH测试结果显示,Bi_4O_5Br_2的比表面积和孔容(37.2 m~2/g,0.215 cm~3/g)显著高于Bi_(12)O_(17)Br_2(8.7 m~2/g,0.04 cm~3/g).UV-Vis DRS测试结果显示,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2均显示了良好的可见光吸收能力.可见光催化去除NO的测试结果表明,Bi_4O_5Br_2(41.8%)的光催化活性明显高于Bi_(12)O_(17)Br_2(28.3%).并且,在5次可见光催化循环实验后,Bi_4O_5Br_2(41.1%)表现出良好可见光催化稳定性.ESR测试结果表明,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2参与反应的主要活性物种均为·OH自由基,Bi_4O_5Br_2产生·OH自由基明显强于Bi_(12)O_(17)Br_2.EPR测试结果表明,Bi_4O_5Br_2的氧空位明显多于Bi_(12)O_(17)Br_2,丰富的氧空位更有利于NO的有效吸附.由此可见,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,只在Bi_(12)O_(17)Br_2光催化氧化NO的转化路径中会生成中间产物N2O3,表明Bi_(12)O_(17)Br_2和Bi_4O_5Br_2具有不同的NO光催化转化路径.结合上述表征结果认为,Bi_4O_5Br_2比Bi_(12)O_(17)Br_2表现出更优异可见光催化性能的主要原因有以下四个方面为:(1)Bi_4O_5Br_2拥有更高的比表面积和更大的孔容,有利于NO的吸附、反应中间产物的转移和提供更多的活性位点参与光催化反应;(2)Bi_4O_5Br_2可以生成更多的·OH自由基和拥有更强的价带空穴氧化能力;(3)NO中的O原子可以与Bi_4O_5Br_2的氧空位结合,从而提供更多的反应位点;(4)Bi_4O_5Br_2的光催化反应中可以生成中间产物N_2O_3,可以降低NO转化成NO_3~-的反应活化能.  相似文献   

16.
以静电纺丝技术制备的TiO_2纳米纤维为模板和反应物,采用水热法合成了具有异质结构的La_2Ti_2O_7/TiO_2复合纳米纤维。将其作为光催化剂,在紫外光和可见光环境中,对模拟有机污染物罗丹明B进行光催化降解。采用XRD,SEM和HRTEM等分析测试手段对样品的组成及形貌进行表征,通过UV-vis漫反射光谱表征其光吸收性能及禁带宽度,测试光催化性能。结果表明:TiO_2纳米纤维形貌得以完好保持,La_2Ti_2O_7纳米晶粒均匀地生长在TiO_2纳米纤维表面形成异质结,减小了TiO_2的带隙宽度,光催化活性提高,光谱响应范围拓宽到可见光区。在紫外光和可见光下均具有良好的光催化活性。  相似文献   

17.
采用沉积-沉淀法再辅以微波干燥和焙烧制备了金属氧化物负载的金簇合物和小的金纳米粒子.干燥方法影响了金颗粒尺寸.在炉干燥过程中Au(Ⅲ)因部分还原而致使Au聚集.相反,在微波干燥下,因快速和加热均一而使Au(Ⅲ)得以保持,在Al_2O_3上负载的Au颗粒尺寸小至1.4 nm.该法可用于具有几种不同微波吸收效率的金属氧化物载体,如Mn O2,Al_2O_3和TiO_2.这些催化剂在低温CO氧化和硫化物选择有氧氧化反应中的催化活性比常规方法制备的更高.  相似文献   

18.
Ag_2O是优良的感光材料,很少作为光催化材料,而常被用作光催化材料的共催化剂.此外,由于Ag_2O禁带宽度窄,且可有效吸收近红外光,因而不能用于全太阳光谱的光催化应用中.同时很少被用作NIR催化剂.本文中不仅研究了纳米Ag_2O颗粒的UV-Vis光催化性能,而且还系统探究了其NIR光催化活性.由于在紫外线和可见光的照射下,Ag_2O纳米颗粒易发生光还原失活,因而对Ag_2O表面硫化处理,使其表面上生长Ag_2S_2O_7层以形成Ag_2S_2O_7/Ag_2O异质结,探究了该异质结UV-Vis光催化活性及其光催化循环稳定性;同时,考察了其近红外光催化及其重复使用性能.利用沉淀法成功制备了Ag_2O纳米颗粒,并通过在其表面部分硫化处理得到Ag_2S_2O_7,成功构筑Ag_2S_2O_7/Ag_2O异质结构,并研究了该Ag_2S_2O_7/Ag_2O异质结构UV-Vis-NIR光催化降解有机污染物性能.研究表明,Ag_2O纳米颗粒在光子能量较低的NIR照射条件下具有较强的光催化活性,但UV-Vis照射下,虽然Ag_2O具有光催化活性,但易发生光还原生成单质银,降低其光催化稳定性;Ag_2S_2O_7/Ag_2O纳米异质结,虽然在UV-Vis-NIR范围内光催化活性略降于Ag_2O,但稳定性显著提高,总体来看,Ag_2S_2O_7/Ag_2O异质结构在全光谱催化方面更具优势.这主要是由于Ag_2O表面部分硫化得到的Ag_2S_2O_7纳米颗粒,且二者之间能带匹配促进了光生载流子分离,同时Ag_2O表面的Ag_2S_2O_7颗粒直接吸收能量较高的UV-Vis,进而保护内部Ag_2O,抑制了其自身还原,可显著提高Ag_2S_2O_7/Ag_2O异质结在UV-Vis-NIR催化活性及稳定性.实验结果分析表明,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV-Vis-NIR条件下均具有稳定且高效的光催化活性,其主要原因为:(1)具有窄带隙的Ag_2O可有效拓宽该异质结的光谱吸收;(2)Ag_2S_2O_7/Ag_2O异质结能带匹配可有效促使光生载流子分离;(3)Ag_2O颗粒表面的Ag_2S_2O_7纳米颗粒可有效提高Ag_2S_2O_7/Ag_2O异质结纳米颗粒的光化学稳定性,尤其是在UV-Vis条件下的化学稳定性.Ag_2O纳米颗粒受到光照(UV-Vis-NIR)激发后产生电子-空穴对,由于Ag_2S_2O_7与Ag_2O能带位置的匹配,Ag_2O导带的光生电子注入Ag_2S_2O_7的导带;而Ag_2S_2O_7价带的光生空穴注入Ag_2O的价带.Ag_2O表面的Ag_2S_2O_7颗粒可有效捕捉电子,从而阻止Ag_2O产生的电子-空穴对复合,进而提高光催化活性;同时当光子能量较高(UV以及部分短波长的Vis)时,Ag_2O表面的Ag_2S_2O_7颗粒直接吸收该部分光能,进而保护内部Ag_2O发生自身还原,因此,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV,Vis及NIR条件下均具有稳定且高效的光催化活性,在高效利用全光谱光催化降解有机污染物方面具有较大的潜力.  相似文献   

19.
报道了一种纳米金催化(杂环)芳基酯与卤代烷经由C—O键活化的酯交换反应.在一系列负载金纳米颗粒和钯纳米颗粒催化剂中,粒径为3.63nm,负载量为3wt%的Au/γ-Al_2O_3催化剂表现出最佳催化活性.该催化剂重复使用五次后仍表现出较高活性.对反应前后催化剂的X射线光电子能谱(XPS)分析表明,该反应可能是通过以Au~0为始态的催化循环来进行的.  相似文献   

20.
自上世纪八十年代在多相催化研究领域兴起纳米金催化淘金热以来,负载型纳米金催化剂的优越性和局限性都得到了广泛的研究.负载型纳米金催化剂活性强烈依赖于其晶粒尺寸和载体性质,一般认为,金纳米颗粒只有在一定的尺寸范围(2-5 nm)且负载在"活性"载体表面才能发挥出其优异的催化活性.然而,小尺寸纳米金颗粒热稳定性差的弱点阻碍了其工业化应用的进程.因此,如何实现小尺寸金纳米颗粒的高温稳定以及构筑金与"活性"载体间有效的接触界面是发挥纳米金优异催化性能的关键.我们曾利用MgGa_2O_4尖晶石载体与金纳米颗粒形成金属-氧化物"异质孪晶"结构,从而实现了将~3 nm的金颗粒稳定在块体金的熔点(1064°C)以上,为小尺寸纳米金的高温稳定提供了新的思路.但MgGa_2O_4尖晶石是一种非氧化还原性载体,对水分子或氧气分子的辅助活化作用较弱,因而限制了具有优异高温抗烧结性能的Au?MgGa_2O_4催化剂在水汽变换和催化燃烧反应中的应用.本文采用等体积浸渍法在高温800°C焙烧5 h后的Au?MgGa_2O_4-800℃-5h样品上进行CeO_2助剂的修饰,以提高其对水分子和氧气分子的活化能力.利用STEM, XRD和EDS-Mapping表征对CeO_2/[Au?MgGa_2O_4-800°C-5h]样品进行结构分析,发现该样品中纳米Au具有优异的高温抗烧结性能, 800°C焙烧5 h并经CeO_2修饰后其颗粒尺寸仍保持在3.1 nm左右,样品中CeO_2的晶粒尺寸约为6 nm,且Au纳米颗粒与CeO_2助剂间形成了有效的接触界面.利用H_2-TPR和XPS表征对该样品的氧化还原性能及电子性质进行分析,发现CeO_2/[Au?MgGa_2O_4-800°C-5h]样品中CeO_2的还原温度相比于CeO_2/MgGa_2O_4对比样品显著降低, XPS结果显示CeO_2添加后Au的化学价态由金属态变为氧化态,表明Au与CeO_2助剂间具有显著的电子转移.同时, CeO_2的添加显著提高了800°C老化后Au?MgGa_2O_4催化水汽变换(CO转化率由~1.5%升到~34.0%, 450°C)、甲烷燃烧(T50降低80°C)和CO氧化(T50降低100°C)等反应活性.为理解CeO_2对Au?MgGa_2O_4的催化性能促进机制,我们选取水汽变换反应为例,利用DRIFTs表征发现CeO_2促进了反应物H_2O的活化,并结合小尺寸Au对CO的活化能力,从而使水汽变换反应顺利进行.本文在MgGa_2O_4尖晶石稳定纳米金的基础上,利用具有优异氧传输性能的CeO_2作为助剂,提高了该催化剂对水分子和氧气分子的活化能力,从而获得了对水汽变换反应和催化燃烧反应具有高稳定性和高活性的CeO_2/[Au?MgGa_2O_4]催化剂.这种"先稳定-后活化"的催化剂设计思路也为今后高稳定性、高催化活性的纳米金催化剂的设计和制备提供了借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号